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Abstract

We show that concrete hardness assumptions about learning or cloning the output state of
a random quantum circuit can be used as the foundation for secure quantum cryptography.
In particular, under these assumptions we construct secure one-way state generators, digital
signature schemes, quantum bit commitments, and private key encryption schemes. We also
discuss evidence for these hardness assumptions by analyzing the best-known quantum learning
algorithms, as well as proving black-box lower bounds for cloning and learning given state
preparation oracles.

Our random circuit-based constructions provide concrete instantiations of quantum crypto-
graphic primitives whose security do not depend on the existence of one-way functions. The
use of random circuits in our constructions also opens the door to NISQ-friendly quantum cryp-
tography. We discuss noise tolerant versions of our OWSG and digital signature constructions
which can potentially be implementable on a noisy quantum computer. On the other hand,
they are still secure against noiseless quantum adversaries, raising the intriguing possibility of
a useful implementation of an end-to-end cryptographic protocol by a near-term quantum com-
puter. Finally, our explorations suggest that the rich interconnections between learning theory
and cryptography in classical theoretical computer science also extend to the quantum setting.
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1 Introduction

The hardness of learning and modern cryptography are inextricably linked in the world of classical
computing. On one hand, hard cryptographic problems have served as the basis of showing that
various learning tasks are intractable (see e.g., [KV94, KS06, DLSS14]). Conversely, the hardness
of various learning tasks have been used to construct fundamental cryptographic primitives, like
pseudorandom functions [IL90, BFKL93, OS16], and practical cryptographic protocols [Reg24,
LPR10]. Furthermore, this connection between learning and cryptography extends further and has
shed light on fundamental questions in the related areas of pseudorandomness [NW94] and circuit
lower bounds [LMN93, CIKK16].

In the quantum world, our understanding of the analogous interconnections is quite lacking.
In one direction, some prior works have used classical cryptographic assumptions, like quantum-
secure one-way functions or LWE, to argue about the hardness of learning quantum states and
circuits in different contexts (see [AGS20, ZLK+24]), but the complexity of many fundamental
quantum learning tasks remain open. However, the converse direction — using hardness of quantum
learning as a foundation for cryptography — has not received much attention, unlike the classical
case1. Arguably, one difficulty in establishing such a connection is that classical cryptographic
primitives appear insufficient to fully capture the inherently quantum nature of tasks involving
learning quantum states or unitaries [CLS24]. This raises an interesting question that forms the
basis of this paper:

Can we base quantum cryptography on the hardness of quantum learning?

Our results

We propose several fine-grained assumptions about quantum learning tasks related to random quan-
tum circuits, give evidence for it in the black-box model, and use these assumptions to construct
several quantum cryptographic primitives. Incidentally, this exploration also leads to several inter-
esting results such as “NISQ-friendly” quantum cryptography and a deeper understanding of various
quantum learning tasks and cryptographic primitives. In more detail:

• Quantum hardness of learning assumptions. We posit that it is computationally in-
tractable to learn the output states of unknown random quantum circuits (Computational
No-Learning Assumption) or to clone them (Computational No-Cloning Assumption). We
formulate these conjectures and discuss the differences between them in Section 1.1. We also
give evidence for these conjectures by proving lower bounds in the black-box model.

• Cryptography from hardness of quantum learning. We show that these hardness of
learning assumptions can be used to construct quantum cryptographic primitives. In partic-
ular, we construct one way state generators (OWSGs) and quantum-secure digital signatures
based on the Computational No-Learning Assumption, and we construct quantum bit commit-
ments based on the Computational No-Cloning Assumption. Recent results have uncovered
the tantalizing possibility of reducing the hardness assumptions behind such primitives beyond
what is possible in classical cryptography [AQY22, MY22b, BCQ23, KQST23]. Our hardness

1As of the last several months, this is starting to change; see Section 1.5 for discussion of recent work on this topic.
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assumptions about random circuits do not appear to imply the existence of classical one-way
functions, and thus our constructions concretely instantiate this possibility.

• Quantum cryptography for the NISQ era. The use of random circuits in our construc-
tions also opens the door to NISQ-friendly quantum cryptography. We demonstrate that our
OWSG and digital signature constructions can be made noise tolerant and thus implementable
on a noisy quantum computer, provided we have a quantum channel to pass quantum states
as cryptographic keys. On the other hand, they are still secure against noiseless quantum
adversaries. This raises the intriguing possibility of a near-term demonstration of quantum
cryptographic advantage: using a NISQ device to run a cryptographic protocol whose security
relies on fewer assumptions than what is possible in classical cryptography.

Organization

In Section 1.1, we introduce our hardness of learning assumptions. Section 1.3 gives a summary
of the constructions of various cryptographic primitives. Section 1.6 provides a discussion of other
implications of our results. Section 1.5 and Section 1.7 briefly discuss recent works that are related to
this paper as well as mention some interesting directions that arise for future explorations. Section 2
introduces the notation and some preliminaries. The black-box lower bound to support our hardness
assumptions are given in Section 3. Section 4 includes details of the cryptographic constructions.

1.1 Our hardness of learning assumptions

We propose two main assumptions regarding the hardness of quantum learning: the Computational
No-Learning Assumption and the Computational No-Cloning Assumption. We precisely define these
conjectures and discuss evidence for them.

The Computational No-Learning Assumption

In what follows, we let C denote a class of quantum circuits; for example, a concrete choice of C is
the ensemble of 1D brickwork circuits with depth d = log2 n.2

Conjecture 1.1 (Computational No-Learning). Let C be a class of circuits. The (C, ε, δ)-Computational
No-Learning Assumption stipulates the following. For all polynomial-time quantum algorithms A,
for all sufficiently large n, we have that

P

[
D ∈ Cn

|⟨C|D⟩|2 ≥ ε
:

C ← Cn

D ← A(|C⟩⊗ poly(n))

]
≤ δ

Here, C ← Cn denotes that C is sampled uniformly from the subset of circuits in C that act on
n qubits, and D is sampled from the output of the algorithm A given polynomially-many copies of
|C⟩ = C|0n⟩. The output D is interpreted as a description of an n-qubit quantum circuit, and
|D⟩ = D|0n⟩.

2We pick out d = log2 n here because it happens to be a depth at which the existing state-of-the-art learning
algorithms, like those in [HLB+23, LL24], fail to be efficient. Even if the learning algorithms were to be improved,
any depth beyond which the efficiency of those learning algorithms fail is a good design choice for our assumptions
and cryptographic constructions.
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In words, the Computational No-Learning Assumption says that it a polynomial-time quantum
algorithm A, given only polynomially-many copies of the output |C⟩ of a randomly-chosen circuit
C from the circuit ensemble C, cannot produce a classical description of another circuit D from the
same class Cn and whose output state |D⟩ approximates |C⟩. We note that the algorithm A only
has access to copies of the state3 generated by the random circuit and the circuit description itself
is not known to the algorithm. Furthermore, Conjecture 1.1 actually refers to an entire family of
assumptions, one for each choice of circuit class C and parameters (ε, δ). Throughout this paper
we consider a fixed circuit family for convenience (e.g., 1D brickwork circuits with depth log2 n

unless otherwise specified). We elaborate on the different parameter settings for (ε, δ) below. For
clarity we abbreviate “Computational No-Learning” as “No-Learning”. Oftentimes we will abbreviate
“(ε, ε)-No-Learning” as “ε-No-Learning”.

Relationship between parameter values. (ε, δ)-No-Learning implies (ε′, δ′)-No-Learning for
all ε′ ≥ ε and δ′ ≥ δ. This is argued by taking the contrapositive: if there exists an efficient
algorithm A that produced an ε′-fidelity approximation |D⟩ of |C⟩ with probability at least δ′, then
A also produced (with the same D) a ε-fidelity approximation with probability at least δ.

A conservative assumption would be to conjecture (1− 1/ poly(n))-No-Learning (i.e., it is hard
for a polynomial-time algorithm to produce a high-fidelity approximation of a state with high prob-
ability). On the other hand, given our current understanding of quantum state learning techniques,
it also seems plausible to conjecture 2−Ω(n)-No-Learning (i.e., it is hard for a polynomial-time al-
gorithm to produce even an exponentially bad approximation with exponential small probability).
That said, we remark that for the purposes of implementing the cryptographic constructions in this
paper, the parameters we require are fairly mild. For instance, we merely need the (1−1/ poly(n))-
No-Learning assumption for the cryptographic constructions that assume a noise-free circuit, and
even for our NISQ-friendly constructions, the ε-No-Learning assumption for any negligible4 function
ε(n) is sufficient.

Edge cases. The hardness assumption cannot hold for ε ≪ 2−n; this is because a quantum
algorithm can output a uniformly random circuit D, and |D⟩ will have fidelity at least 2−n with |C⟩
in expectation. Similarly, the hardness assumption cannot hold for δ ≤ |Cn|−1 = 2−Ω(nd), because
the algorithm can always simply guess the description C of the state |C⟩.

Proper vs. improper learning. We point out that the assumption is about the hardness of
producing a circuit description D that comes from the same class C as C. In the learning theory
literature this is known as the setting of proper learning, where the learner has to output a hypothesis
from the same concept class as the true underlying concept. One can also consider the setting of
improper learning, where the output description D can come from a more general class of circuits.
For example, the circuit learning algorithms of [HPS24, LL24] are improper learners: given copies
of output states of depth d circuits, they produce descriptions of circuits with depth greater than d.
One can consider hardness of learning conjectures in the improper setting as well; ours is the more

3We stress that |C⟩ does not mean the classical description of C, but rather the state generated by the circuit C

on the all zero input.
4A function is negligible if it goes to zero faster than any inverse polynomial.
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conservative assumption (because the learner has the additional constraint of outputting a circuit
from C).

The Computational No-Cloning assumption

In this section, we postulate a computational version of the famous No-Cloning principle of quantum
mechanics. At a high level, it stipulates that given polynomially copies of the output state of a
random quantum circuit, it is intractable to produce an additional copy of the state, or even an
approximation of it.

Conjecture 1.2 (Computational No-Cloning). Let C denote a class of circuits. The (C, ε, δ)-
Computational No-Cloning Assumption stipulates the following. For all polynomial-time quantum
algorithms A, for all polynomials k(n), for all sufficiently large n, we have that

P

[
|⟨C|⊗(k+1)|ϕ⟩|2 ≥ ε : C ← Cn

|ϕ⟩ ← A(|C⟩⊗k)

]
≤ δ

Here, C ← Cn denotes that C is sampled uniformly from the subset of circuits in C that act
on n qubits, and a (k + 1)n qubit state |ϕ⟩ is sampled from the output of the algorithm A, given
polynomially-many copies of |C⟩ = C|0n⟩.

As before, the algorithm A only has access to copies of the state generated by the random
circuit and not the circuit description itself. We also abbreviate “Computational No-Cloning” as
“No-Cloning” and also abbreviate “(ε, ε)-No-Cloning” as “ε-No-Cloning”.

Corollary 1.3. The ε-No-Cloning Assumption (Conjecture 1.2) implies the εc-No-Learning As-
sumption (Conjecture 1.1) for some 0 < c < 1.

(Proof Sketch). This follows from taking the contrapositive. If the description of the circuit C could
be approximately learned with squared fidelity ϵc by some quantum polynomial-time algorithm A

(i.e, quantum state learning is easy), we can devise an efficient cloning algorithm B that first runs
A in a coherent fashion on the k copies to learn an approximation D, synthesizes an extra copy of
|D⟩ (which is supposed to represent the (k + 1)st copy of |C⟩), and then uncomputes A to recover
the original k copies of |C⟩. The fact that this strategy obtains ε fidelity with |C⟩⊗(k+1) follows
from a calculation virtually identical to that of Claim 4.10, which is part of the proof that the No-
Cloning Assumption implies the existence of quantum commitments. This violates the ε-No-Cloning
Assumption.

Cloning is potentially easier than learning. Corollary 1.3 means that learning is potentially
an easier task than learning. It could be that we can clone just one more copy of the state but we
still cannot learn the state.

There is some suggestive evidence of this fact from the work of Nehoran and Zhandry [NZ24],
who construct a quantum oracle with respect to which a collection of states is efficiently clonable, but
it is not efficiently “telegraphable,” given only one quantum sample. Informally, telegraphing means
getting a classical string out of one copy of a quantum state by “deonconstructing” it, from which
one copy of the state can again be “reconstructed.” While the notion is qualitatively reminiscent of
a learning task, this is formally different from the notion of learning in our paper.
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1.2 Barriers and evidence for the hardness assumptions

1.2.1 The barriers

What are the prospects of proving Conjecture 1.1 or Conjecture 1.2 outright? First, we note that
the conjectures are necessarily computational, meaning that they are intrinsically about the limits
of efficient quantum computation. This is because it is possible for an exponential-time quantum
algorithm to learn a circuit description with high probability, given only polynomially-many quan-
tum samples (and thus also solve the cloning task with similar sample complexity). One method
is to use the classical shadows protocol of [HKP20]; we describe this in more detail in Section 2.
We note that Morimae and Yamakawa already observed that there is always an exponential-time
attack on one-way state generators [MY22a] via shadow tomography; this is essentially the same
observation.

Furthermore, we note that proving our hardness conjectures would have dramatic implications
for classical complexity theory. The classical shadows-based algorithm described in Section 2 can
be implemented in polynomial time assuming the complexity inclusion NP#P ⊆ BQP.5 Therefore
Conjecture 1.1 implies P ̸= PSPACE. While this doesn’t imply (say) P ̸= NP, for all intents and
purposes this would represent a similar breakthrough in mathematics and complexity theory. The
longstanding difficulty of proving such complexity separations pose a barrier to proving our hardness
assumptions.

1.2.2 The evidence

We now discuss the evidence for our hardness assumptions. First we discuss the No-Learning
assumption.

Examining best known learning algorithms. Recently there has been progress on obtaining
efficient algorithms for learning states of bounded circuit complexity [HLB+23, FGZ24, LL24]. The
algorithm of Fefferman, Ghosh, and Zhan [FGZ24] requires the use of oracle access to the circuit
itself, rather than only having copies of the output state C|0n⟩, which we do not consider in this
paper. For algorithms that learn using copies of the output state alone, the current state-of-the-art
is due to Landau and Liu [LL24], who show the following:

Theorem 1.4 ([LL24]). Fix an integer k > 0. There is an algorithm that, for all ε > 0, δ > 0,
given copies of an unknown quantum state |C⟩ = C|0n⟩ for some depth-d circuit acting on a k-
dimensional lattice with two-qubit gates, outputs the description of a depth (2k+1)d circuit D such
that ∥|C⟩ − |D⟩∥ ≤ ε with probability 1− δ. Furthermore, the algorithm uses

n4 · 2O(dk)

ε4
log

n

δ

copies of |C⟩, and runs in time

n4 · 2O(dk)

ε4
log

n

δ
+
(nd
ε

)O(dk+1)
.

Here, the O(·) suppresses dependence on k, which we treat as a constant.
5It was recently shown by Hiroka and Hsieh [HH24] that efficient state learning is possible if PP ⊆ BQP, which

represent an improved complexity upper bound.
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For intuition, consider some parameter settings. Suppose ε, δ are some fixed constants (like
0.001).

1. When d = O(1), then the sample complexity is O(n4 log n), and the time complexity is nO(dk).

2. When d = O(log1/k n), then the sample complexity is still poly(n), but the time complexity
becomes quasipolynomial 2polylogn.

3. When d≫ log n, then both the sample and time complexity become superpolynomial.

In more detail, the learning algorithms of both Huang, et al. [HLB+23] and Landau and
Liu [LL24] revolve around the idea of learning so-called “local inversions” of the circuit C, which are
small subcircuits V that “undo” part of the overall circuit to be learned: (V †⊗ I)|C⟩ ≈ |0k⟩⊗ |θ⟩ for
some n− k qubit state |θ⟩. In other words, some small number k of qubits have been disentangled
from the state |ψ⟩.

If the circuit depth d is small, then the local inversions have size O(dk) (assuming a k-dimensional
circuit architecture), and the learning algorithm can brute force over all possible subcircuits of size
O(dk). Once the local inversions have been learned, the challenge is to “stitch” all of the local
inversions (which overlap with each other) in a consistent way.

The complexity of learning a single local inversion takes time at least 2O(dk). Thus with a ran-
domly chosen circuit of depth that asymptotically grows faster than O(log n) (e.g., d = log2 n), there
are many more possibilities than is possible to consider in polynomial time. Furthermore, searching
through candidate local inversions of a random circuit appears to be an “all or nothing” task: either
a candidate successfully inverts a local patch, or it will likely scramble the state even further. Thus
it does not seem possible to make the learning algorithms of [HLB+23, LL24] “gracefully fail” by
dialing back their runtime to being polynomial in n. Looking at the prototypical algorithmic ideas
in these papers suggests that if one is in fact limited to polynomial time algorithms, then the typical
fidelity will likely be exponentially small.

Just to give a crude sense of the time and sample complexity cost of these algorithms, let us take
n = 70 qubits, depth d = 24, and a 2D geometry, where the values are taken from Google’s latest
quantum advantage experiment [MVM+23]. Then, from Theorem 1.4, the algorithm by Landau
and Liu [LL24] needs at least

n4 · 2dk

ϵ4
log

n

δ

samples to get better than 1 − ϵ fidelity with more than 1 − δ success probability. Hence, to get
0.99 fidelity with 0.99 success probability, the algorithm needs at least 5.26×10177 trillion quantum
samples. Similarly, by plugging in values to the formula in Theorem 1.4 to compute the time
complexity, the algorithm needs at least 10174 trillion hours. This shows that both the sample and
time complexity are too large to be practical, which is heuristic evidence that the task of learning the
state is hard. However, an important caveat is that this is just one algorithm and it is very plausible
that there is a much more optimized version of these learners for more specialized ensembles, like
the one Google is using, by exploiting unique properties of the same. We leave it for future work to
rigorously analyze the tradeoffs between performance and runtime of existing learning algorithms.
Such analysis is crucial for obtaining further evidence for the validity of our hardness assumptions.
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Worst-case hardness from post-quantum assumptions. The No-Learning Assumption is an
average-case hardness assumption, because it is about learning over the uniform distribution over cir-
cuits. One can also wonder about the hardness of worst-case learning. Zhao, et al. [ZLK+24] showed
that, assuming that subexponential-time quantum computers cannot solve the RingLWE problem,
any quantum algorithm that learns the circuit description given copies of the n-qubit state requires
at least exp(Ω(min{G,n})) time, where G is size of the quantum circuit to be learned. RingLWE
is a version of the Learning With Errors (LWE) problem, whose assumed hardness underlies most
proposals for post-quantum cryptography (i.e., cryptography that can be run on classical comput-
ers, but are secure against quantum computers). When the number of gates G is superlogarithmic,
then the time complexity lower bound is superpolynomial.

One may wonder why, given the results of Zhao, et al. [ZLK+24], we need to make a separate
assumption about the hardness of learning quantum circuits. Given the widespread belief in the
security of various versions of LWE (for example this underlies much of NIST’s recent standardiza-
tion of recommended post-quantum cryptosystems [FIP23, Nat24]), it would seem that hardness of
(Ring)LWE automatically implies the hardness of learning circuits from [ZLK+24] and therefore all
our applications of Conjecture 1.1 follow.

There are two issues with this reasoning. The first is that the result of Zhao, et al. [ZLK+24]
implies the hardness of learning under a very particular distribution of quantum circuits: namely,
ones that encode the RingLWE problem, which are quite structured6 and are statistically far from
truly random quantum circuits. The second and most important issue is that, while the RingLWE
hardness can be viewed as evidence for our hardness conjectures, it appears to be a significantly
harder statement to prove. For one, the hardness of RingLWE trivially implies P ̸= NP, one of the
major open questions in mathematics. On the other hand, P ̸= NP is not known to be implied
by Conjecture 1.1. Indeed, there is emerging evidence that Conjecture 1.1 is a reduced assumption
compared to P ̸= NP (i.e., there are mathematical worlds in which P = NP but tasks related to
learning quantum circuits is still hard [KQST23]). Since one of our primary motivations is to base
cryptography on the fewest mathematical assumptions possible, we treat our hardness assumptions
as being more basic and plausible than any post-quantum hardness assumption.

Evidence for No-Cloning assumption. We can similarly examine the evidence for the No-
Cloning assumption. As mentioned above, since the cloning is potentially an easier task, the No-
Cloning conjecture is a stronger assumption than No-Learning. However, as far as we are aware,
there are no known algorithms for cloning that perform significantly better than ones for learn-
ing. One could consider, for example, the optimal pure-state cloning map that was analyzed by
Werner [Wer98]. This map, which is essentially to project the input state onto the (k + 1)-fold
symmetric subspace, is provably the most sample-efficient procedure for taking copies |ψ⟩⊗k of an
arbitrary input state |ψ⟩ (not necessarily one generated by a polynomial-size circuit) and producing
an approximation of |ψ⟩⊗k+1. Werner [Wer98] showed the best achievable fidelity in general is(

2n+k−1
k

)(
2n+k
k+1

) =
k + 1

2n

which is exponentially small for k = poly(n).
6In more detail, these are based on constructions of pseudorandom states from one-way functions [JLS+18].
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Aside from Werner’s optimal cloning map, as far as we are aware the best algorithms for the
cloning task are based on first solving the learning task. As we discussed before, such algorithmic
ideas, if we restrict them to run in polynomial time, seem unable to achieve anything better than
exponentially small fidelity. We leave it is an interesting open problem to come up with an algorithms
– even ones that run in subexponential time – for cloning states of random circuits that do not learn
the circuit description first.

Black-box lower bounds. We give more evidence to support the No-Learning and No-Cloning
assumptions by proving lower bounds in the black-box model. We desire a black-box model which
captures the analogous properties in the white-box setting. For instance, one property we would
like to capture is the typical distribution of the output state of a random quantum circuit, which
mimics the distribution of a Haar-random state. Another property we would like to capture in the
black-box model is the existence of a learning algorithm that uses only polynomially-many copies
of the state but is allowed to make exponentially many black-box queries – this would be analogous
to the existence of the exponential-time, polynomial-sample complexity learning algorithm.

With such considerations in mind, we formalize a state preparation oracle model where the oracle
O takes as input a state |i⟩|0n⟩ and outputs |i⟩|ψi⟩ for some Haar-random state |ψi⟩. The oracle can
be accessed in superposition, and there is no guarantee about what the oracle does when the second
register is initialized to something other than all zeroes. Intuitively, each index i corresponds to
a different polynomial-size circuit, but the algorithm is not allowed to exploit the structure of the
circuit except to prepare the resulting output state. We prove the following:

Theorem 1.5 (Black-box lower bounds for cloning). There exists a state preparation oracle O such
that all T -query quantum query algorithms getting k copies of |ψJ⟩ for a uniformly random index
J ∈ [2n] satisfy

F(ρ, |ψJ⟩⟨ψJ |⊗k+1) ≤ 2−n/4(2T + k + 1)

where ρ is the output of the query algorithm and F(·) denotes the fidelity function.

In other words, unless either the number of queries T or the number of copies k are 2Ω(n), the
expected fidelity of cloning is exponentially small. Since the ability to learn implies the ability to
clone, this also shows a similar lower bound for the learning task. We elaborate on the model and
prove Theorem 1.5 in Section 3.

1.3 Cryptography from our hardness assumptions

We now summarize our main cryptographic applications using the hardness of quantum learning
assumptions from Section 1.1.

1.3.1 One-way state generators from hardness of learning

A one way state generator (OWSG) is an efficient algorithm that takes as input a classical key
k, and outputs a quantum state |ψk⟩ from that key. Anyone with the key k can efficiently verify
that |ψk⟩ is the correct output. Furthermore, given polynomially many copies of the |ψk⟩ for
a randomly chosen k, it should be computationally hard for an adversary to produce another
key k′ such that the corresponding state |ψk′⟩ is close to the original output |ψk⟩. (For a formal
definition, see Section 4.1). Introduced by Morimae and Yamakawa [MY22b], OWSGs are a quantum
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Protocol 1.6. Random Circuit OWSG

Generation algorithm: Given input key C ∈ {0, 1}r(n), interpret it as a description of an
n-qubit circuit C from the ensemble Cn. Output |C⟩ = C|0n⟩.
Verification procedure: Given input C ∈ {0, 1}r(n) and a state |D⟩ on n qubits, apply C†

to the state, and measure. Accept if the result is all zeroes, and reject otherwise.

Figure 1: Construction of one-way state generator from random circuits.

analogue of one-way functions, which are functions efficiently computable in the forwards direction
but computationally difficult to invert.

The No-Learning Assumption (Conjecture 1.1) is essentially equivalent to the existence of a
OWSG, namely the Random Circuit OWSG described below in Figure 1. For a range of parameters,
this is immediate: for negligible ε (i.e., ε goes to 0 faster than any inverse polynomial), the ε-No-
Learning Assumption is easily seen to be equivalent to the security of the Random Circuit OWSG.
When ε is larger, say even up to 1− 1/ poly(n), the equivalence still holds; this relies on hardness
amplification techniques for OWSGs [MY22a, BQSY24]. We note that this equivalence was also
independently observed by Hiroka and Hsieh in a recent preprint [HH24].

Although a OWSG is not immediately cryptographically useful by itself, it is now known that
OWSGs can be used as a primitive building block for a variety of quantum cryptosystems. In their
papers defining OWSGs [MY22b, MY22a], Morimae and Yamakawa showed that OWSGs can be
used to build bounded-time-secure digital signature schemes. In a breakthrough work, Khurana
and Tomer showed that OWSGs imply the existence of quantum bit commitments [KT24a], which
in turn imply other functionalities such as quantum zero knowledge proofs for NP and secure
multiparty computation [BCQ23]. Therefore, using the Random Circuit OWSG, we obtain concrete
implementations of these cryptosystems on quantum computers, without relying on the use of one-
way functions.

An attractive feature of our Random Circuit OWSG is that it seems potentially amenable to
implementation on noisy quantum computers, and thus the corresponding cryptosystems may be
realizable in the near- and medium-term. We discuss noise tolerant versions of our random circuit-
based cryptographic protocols in Section 1.3.1.

1.3.2 Simple quantum commitments from the hardness of cloning

A commitment scheme enables two parties (known as a “committer” and a “receiver”) to perform
the cryptographic equivalent of putting a message in a sealed envelope that is opened later. In a
quantum commitment scheme, a committer upon getting a bit b generates a bipartite pure state
|ψb⟩AB, and sends the register B to the receiver; this is the “commitment phase” of the protocol and
is the analogue of sending the sealed envelope. At this point the receiver should not be able to tell
what the bit b is.

Later, in the “reveal phase” of the protocol, the committer announces the bit b and sends the
remaining register A of |ψb⟩ to the receiver, who can uncompute the state to check its validity.
The security of the commitment scheme ensures that the committer cannot “change his mind” in
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Protocol 1.7. Commitment scheme based on random circuits

Commitment phase: To commit to bit b = 0, the committer prepares the state

|ψ0⟩AB :=
1√
|Cn|

∑
C∈Cn

(
|C⟩⊗k ⊗ |0n⟩

)
A
⊗ |Ĉ⟩B

where |Ĉ⟩ represents the classical description of the circuit C.

To commit to bit b = 1, then prepare the state

|ψ1⟩AB :=
1√
|Cn|

∑
C∈Cn

|C⟩⊗(k+1)
A ⊗ |Ĉ⟩B .

The committer sends register B of the state |ψb⟩ to the receiver.

Reveal phase. The committer reveals the bit b to the receiver, and also sends the remaining
register A of |ψb⟩. To verify, the receiver will uncompute the unitary that synthesizes |ψb⟩
and check that the all zeroes state is obtained.

Figure 2: Commitment scheme based on random circuits

between the commit and reveal phases to convince the receiver he had committed to the opposite
bit 1− b.

Recently, quantum commitments have become a centerpiece of the zoo of quantum crypto-
graphic primitives [AQY22, MY22b, BCQ23, KT24a]. As mentioned, Khurana and Tomer showed
that OWSGs can be used to construct quantum bit commitments in a generic way [KT24a]. There-
fore our No-Learning Assumption implies the existence of secure quantum commitments. However
the construction of commitments in [KT24a] is quite involved, requiring an intricate sequence of
transformations mimicking the classical transformation from one-way functions to pseudorandom
generators [HILL99].

We construct a simple quantum bit commitments based on the Computational No-Cloning
Assumption (Conjecture 1.2), and furthermore the analysis is fairly direct and straightforward. We
describe the construction below. As discussed in Section 1.1, the No-Cloning Assumption implies
the No-Learning Assumption. The ease of obtaining a commitment scheme from the No-Cloning
Assumption suggests that the No-Cloning Assumption could be strictly stronger than the No-
Learning Assumption (because it appears that obtaining commitments from OWSGs requires an
intricate analysis [KT24a]).

We present and analyze the bit commitment scheme in detail in Section 4.2.

1.4 NISQ-friendly quantum cryptography

An important challenge in the field of quantum computing is to find a practical use case for noisy,
near-term quantum (i.e., NISQ) computers. Although great strides have been made recently in
demonstrating principles of error-correction and fault-tolerance on quantum devices [BEG+24,
AABA+24], large-scale implementations of many quantum algorithms of interest (e.g., Shor’s,
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Grover’s, Hamiltonian simulation, etc) still seem quite a ways off. Thus there is significant in-
terest in finding an application that (a) can be implemented on an a NISQ device, (b) has some
advantage over classical computers/protocols, and (c) is practically useful. We show that our hard-
ness assumptions yield quantum cryptosystems that satisfy these three criteria.

Our random circuits-based cryptosystems are arguably NISQ-friendly. Random quantum circuits
have been investigated extensively on real hardware platforms ever since Google’s original quantum
supremacy announcement in 2019 [AABea19]. The lack of structure in random quantum circuits is
advantageous for maximizing quantum advantage while minimizing the burden on the NISQ device.
Furthermore, the effective noise model when executing random quantum circuits often becomes
quite simple [AABea19, DHJB24].

Furthermore, implementing cryptosystems based on our hardness assumptions would concretely
realize the possibility of having secure quantum cryptography using reduced assumptions as com-
pared to classical cryptography (for example, we do not need to assume P ̸= NP or that one-way
functions exist) [Kre21, AQY22, MY22b, BCQ23, KT24b]. This would represent what we call
“quantum cryptographic advantage.”

We presented protocols that solve useful cryptographic tasks: digital signatures, bit commit-
ments, encryption, and more. Although these protocols are not immediately NISQ-friendly out of
the box, we show how to “NISQ-ify” some of them so that they are.

1.4.1 NISQ-friendly one-way state generators

While implementing the Random Circuit OWSG on a realistic quantum computer, noise can degrade
the fidelity of the output state. For certain choices of noise parameters and depth regimes, the fidelity
can be inverse polynomial in the number of qubits. If that happens, the success probability of any
verification procedure would degrade similarly. Although the OWSG may be secure against any
polynomial-time adversary, it may not be very useful if the “honest user” (e.g., someone with the
key) tries to run it on a noisy quantum computer. On the other hand, making a OWSG tolerant to
noise may give greater leeway to break its security.

However, if we make a sufficiently strong assumption (e.g., the ε-No Learning assumption for
negligible ε), there is a noticeable gap between the success probability of a noisy verifier (who has
the circuit description) and any noiseless polynomial-time adversary (who doesn’t have the circuit
description): the adversary cannot produce any approximation to the state except with negligible
fidelity. We can amplify this gap to obtain a NISQ-friendly OWSG, where both the generation and
verification algorithms can be run on a noisy quantum computer, but the OWSG also retains its
security against noiseless adversaries. We achieve this amplification via a computational Chernoff
bound.

Computational Chernoff bounds. A standard way to amplify the security of a OWSG is via
parallel repetition [MY22a, BQSY24]: the key to the amplified OWSG corresponds to a t-tuple
of independently chosen random circuits (C1, . . . , Ct), and the output is the tensor product of the
corresponding states |C1⟩ ⊗ · · · ⊗ |Ct⟩. Verification proceeds by checking that the i’th block of n
qubits is in the state |Ci⟩ for each i = 1, . . . , n. Intuitively, if it is somewhat hard for the adversary
to learn the output of one random quantum circuit, then it should be very hard for the adversary
to simultaneously learn the output of many random quantum circuits. However, because the noisy
fidelity is small, standard parallel repetition theorems do not directly work because the fidelity of
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the overall state on nt qubits would degrade exponentially with t, making it negl(n), which means
even honest verifiers would fail to see a non-trivial signal.

Our technical innovation is to use threshold parallel repetition for amplification—this is a OWSG
Gt,k consisting of t independent copies of G, but instead of verifying that all t copies have been
inverted, the verification algorithm checks that at least k out of the t have been inverted. To bound
its security we prove new computational Chernoff bounds for OWSGs. A detailed discussion, with
the theorem statements, can be found in Section 5.1.

1.4.2 NISQ-friendly digital signatures

As a direct application of our NISQ-friendly OWSG we obtain a NISQ-friendly quantum digital
signature scheme. At a high level, a digital signature scheme (with quantum public keys) is a
method for a signer to generate a signature for a message in a way that a third party verifier (using
a quantum public key posted by the user beforehand) can verify that the signature belongs to the
message (and in particular, the message or the signature have not been changed).

Morimae and Yamakawa [MY22b] showed that such quantum digital signature schemes can be
directly constructed from OWSGs by adapting the famous Lamport construction of digital signa-
tures [Lam79]. We show that by plugging in the NISQ-friendly random circuit OWSG, their digital
signature scheme becomes NISQ-friendly as well. This gives example of an end-to-end cryptographic
task for NISQ-devices whose hardness relies on an innately quantum conjecture.

We present the scheme and the analysis in detail in Section 5.2.

1.4.3 On noise assumptions and asymptotics

Note that the only noise assumption we need is that the fidelity of the signal should at most be
inverse polynomially large. However, an observant reader would notice that Cn is an ensemble of
sufficiently deep circuits. For certain noise models, for e.g. constant rate of depolarizing noise per
gate, or more generally, constant rate of unital noise per gate, the output converges to the maximally
mixed state [AB96, DNS+22] exponentially fast in the depth of the circuit, which would cause inverse
superpolynomially large signal decay at large depths. However, there are three perspectives on why
our proposal is still relevant to near-term experiments.

Firstly, the results proving convergence to the maximally mixed state [DNS+22, AGL+23] are
asymptotic statements, whereas real experiments have finite system sizes. Thus, there is a discrep-
ancy between what theoretically happens when we scale up the system size and what is experimen-
tally observed for a fixed system size. For example, in quantum advantage demonstrations with
random circuits, the experimentalists have observed signatures of long range entanglement and ev-
idence of convergence to the Porter-Thomas distribution when the output state is measured in the
standard basis [AABea19, MVM+23]. Note that Porter-Thomas distribution is far in total variation
distance from the uniform distribution, where the latter is what we get when we measure a maxi-
mally mixed state in the standard basis. If the system were indeed close to being maximally mixed,
we would neither see long-range entanglement nor Porter-Thomas type behavior. Thus, sampling
from the uniform distribution is not a good approximation to the realistic output distribution, even
though the distributions are close asymptotically [AB96, DNS+22].

There are other classical samplers, such as the recent one proposed in [AGL+23], which differ
from simply sampling the uniform distribution. However, the sampler in [AGL+23] achieves a
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smaller total variation distance than the uniform distribution only at a depth of approximately
∼ log n. Properties of real experiments—such as the presence of long-range entanglement—indicate
that they do not operate at logarithmic depth but rather in a much deeper regime. Thus, in the
same way as the uniform distribution, it is unclear if the sampler of [AGL+23] is directly applicable
to real experiments, even though its classical spoofing distribution is again asymptotically close to
the noisy target distribution.

Secondly, note that the fidelity of the output state of a noisy circuit, comprised of two qubit
gates and a single-qubit, uncorrelated noise channel acting upon each qubit after the application of
each gate, is

F = (1− ϵ)2s,

or the probability that no errors occurred anywhere in the system. Here, where s is the circuit size
and ϵ is the noise rate per qubit. If ϵ is at most ∼ 1

n , F ≈ e−Θ(s·ϵ). Hence, one valid regime for
inverse polynomial decay in fidelity is when ϵ is ∼ 1

n logn and the system size s is ∼ n log2 n. In
certain models, the structure of the output state becomes even simpler. One of the a noise models
for which this is manifestly true is the white noise model [AABea19, BEG+24, DHJB24]. According
to this model, if the noise per gate is unital, and if the noise rate ϵ is at most ∼ 1

n , then the output
state of the circuit can be written as

ρout = Fρnoiseless + (1− F ) I
2n
,

that is, as a linear combination of ρnoiseless, which is what the output state would have been if there
were no noise, and the maximally mixed state. While the noise rate per gate going down with n is
unrealistic for extremely large system sizes, it is nonetheless a reasonable model of real experiments
as structural properties of experimental output states match the white noise output state. In fact,
judging by the recent progress in random quantum circuit experiments, e.g. [AABea19, MVM+23,
RABFF+23], it seems quite reasonable to model realistic noise as going down with system size.

Thirdly, note that in all of the previous discussions, we have assumed noise to be unital. But
real noise is complicated and it is unclear if any of the above results (e.g., convergence to the
maximally mixed state or the white noise model) are realistic for near-term experiments. As an
example of surprising behavior with more general noise models, researchers have recently studied
the effects of non-unital noise channels in random quantum circuits [FGG+24, MAG+24, OJF23].
Non-unital noise is ubiquitous in real world experiments, as witnessed by, e.g., readout errors, T1
decay for superconducting systems, and photon loss in bosonic systems [S+23, W+22, ZL+21]. In
particular, certain structural properties that are true for unital noise at some regimes, like anti-
concentration or convergence to the maximally mixed state, fail in the presence of any constant rate
non-unital noise channel [FGG+24], and hardness or easiness results that assume these properties,
like [AA11, Aha03, BFNV19, AGL+23], do not seem to work.

1.5 Related work

We discuss the relationship between our work and some concurrent, independent works that recently
appeared.

Cryptography from assumptions about random circuits: Khurana and Tomer [KT24b]
also study the quantum cryptographic implications of hardness assumptions about random cir-
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cuits. Their hardness assumption posits that it is #P-hard to estimate the output probabili-
ties of a random quantum circuit, given a classical description of the circuit. This is a well-
studied hardness assumption and is the theoretical basis for many quantum supremacy propos-
als (e.g., [AA11, BFNV19, AABea19]). Combined with the complexity-theoretic assumption that
P#P ̸⊆ ioBQP/qpoly, [KT24b] show how to construct quantum one-way puzzles, which in turn
implies the existence of quantum bit commitments through their previous work [KT24a].

While random circuits are at the core of the hardness assumptions of our paper as well as [KT24b],
the similarities quickly end. Khurana and Tomer are positing the hardness of a classical-input,
classical-output task: given the description of a quantum circuit and a string, estimate the proba-
bility of outputting the string. Our hardness assumptions, on the other hand, are about quantum-
input tasks: given quantum copies of the output state of a random circuit, either learn or clone it.
Importantly, the circuit description is not known to the adversary.

Furthermore, our motivations have some differences: they are motivated by basing quantum
cryptography on separations between decision complexity classes, whereas we are primarily moti-
vated by the connection between quantum learning problems (which involve quantum inputs) and
quantum cryptography.

On a different note, in Bostanci, Haferkamp, Hangleiter, and Poremba [BHHP24], the authors
construct quantum cryptography from a suite of assumptions about random IQP circuits. De-
pending on the type of assumption, the authors get quantum trapdoor functions, quantum pseu-
doentanglement, and candidate constructions of efficient pseudorandom unitaries. There are large
differences between this work and our work, in terms of the nature of assumptions, the justifications
for hardness, the flavours of cryptography that one gets, and the query lower bounds. These two
works represent complementary explorations into cryptography from two different random ensem-
bles, ours involving brickwork random circuits, and theirs involving IQP circuits.

Cryptography from assumptions about quantum states, protocols, and noise: Qian,
Raizes, and Zhandry [QRZ24] study the quantum cryptographic implications of a new “search-type”
assumption they call classical → quantum extrapolation, where the goal is to extrapolate the rest
of a bipartite pure state given the first register measured in the computational basis. They show
that the hardness of this extrapolation task implies the existence of quantum bit commitments
and is implied by the existence of various quantum public-key primitives. We view their work
as studying the cryptographic implications of a (conceptually new) “generic” assumption, where
they do not specify how exactly to generate the hard, inextrapolable bipartite states. On the
other hand, we are focused on the cryptographic implications of a “concrete” assumption, where we
instantiate the underlying primitive (OWSG, quantum commitment) with a concrete algorithmic
implementation. This is similar to the difference between assuming that some one-way function
exists, versus assuming that a specific one-way function exists (e.g., the RSA function or the LWE
function).

Morimae, Shirakawa, and Yamakawa [MSY24] give a characterization of the complexity as-
sumptions needed for a class of protocols for proofs of quantumness; in particular they show that
one-way puzzles (the same primitive constructed by [KT24b]) are necessary and sufficient. Their
goal is squarely aimed at understanding the complexity of proofs of quantumness in the abstract,
and less by having concrete instantiations of quantum cryptographic primitives. For related papers
on the interplay between one-way puzzles, proofs of quantumness, and quantum cryptography, also
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see [CFSY23, HM24, CGGH24].
Hiroka and Hsieh [HH24] studies the hardness of learning efficiently generatable pure states.

The main focus of this paper is a PP upper bound on this task. They also base some cryptography
on their hardness assumptions, like the existence of one-way state generators. The crucial difference
between this work and ours is that they consider one particular learning assumption, whereas we
consider a suite of learning and distinguishing assumptions, basing different flavours of cryptography
on each. We also discuss in detail how to make our protocols NISQ-implementable.

Poremba, Quek, and Shor [PQS24] put forward a new quantum-inspired primitive called Learn-
ing Stabilizers with Noise (LSN), which deals with decoding a random stabilizer code in the presence
of local depolarizing noise. Their primitive implies (statistically hiding and computationally bind-
ing) bit commitments. Their goal is to construct a new natively quantum assumption for quantum
cryptography, as opposed to NISQ-friendliness of their protocols.

NISQ-friendly cryptography: Finally, we comment on the relationship between the proposals
by [AH23, BBF+24] to use NISQ devices to perform certifiable randomness generation. Similarly to
our work, they propose a cryptographic task that can be performed on a NISQ device, and whose
security can be based on hardness assumptions about random circuits.

However a significant difference is that the verification procedure in their protocols are inherently
inefficient; it requires exponential time even using a quantum computer as it requires approximating
output probabilities of a random quantum circuit. In contrast, our NISQ-friendly digital signature
scheme is efficiently implementable.

1.6 Summary

Our exploration also uncovers a deeper understanding of various quantum learning tasks and cryp-
tographic primitives.

Fine-grained distinctions in learning and cryptography. Our work connects fine-grained
learning tasks to understanding the relative power of different cryptographic primitives. This opens
up a potential new approach to understand both. For instance, cloning is potentially an easier task
than learning7. Our work shows that the hardness of learning assumptions is essentially equivalent
to the existence of OWSGs from random circuits, while the hardness of cloning can be used to
construct a fairly simple bit commitment scheme. This indicates that commitments are likely to
be a more minimalistic cryptographic primitive than OWSGs. Our conclusion is consistent with
oracular evidence in [BMM+24, BCN24].

Practical applications of random quantum circuits. Random circuits have been extensively
studied in the context of quantum advantage in the NISQ-era. Several experimental groups around
the world (for e.g, [AABea19, MVM+23, ZWD+20, ZCY+21, ZL+21] have claimed practical demon-
strations of quantum advantage with sampling tasks involving random circuits. Furthermore, there
also has been extensive effort to build theoretical foundations of quantum advantage based on such
sampling tasks (see e.g., [AC17, BFNV19, AGL+23, FGG+24]), but even if we are able to demon-

7There is some suggestive evidence here in the form of a black-box separation for a related task [NZ24].
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strate practical advantage with such circuits, one major challenge that remains is to use NISQ
devices or random quantum circuits to solve practically useful problems.

By proposing useful cryptographic applications of random circuits that are “NISQ-friendly”,
our work takes one further step in addressing this challenge and complements the recent work on
certified random number generation with random circuits ([AH23, BBF+24]).

Minimal assumptions for cryptography. Our work contributes to understanding the minimal
theoretical assumptions needed for quantum cryptography. While in the classical world the existence
of one-way functions is widely believed to be necessary for cryptography [Imp95], in the quantum
context this may not be the case. In particular, recent work has given black-box evidence in which P
= NP and yet single-copy secure pseudorandom quantum states still exist [KQST23, Kre21]. This
suggests that certain quantum cryptographic primitives are possible even without the existence
of one-way functions, for e.g., see [AQY22, BCQ23, LMW24]. On the other hand, in the white-
box setting, all currently known constructions of such quantum pseudorandom states require the
existence of quantum-secure one-way functions [JLS+18]. Consequently, a major challenge that
remains is to construct quantum cryptographic primitives which do not rely on the existence of
one-way functions and are based on concrete hardness assumptions. Our work addresses this by
constructing cryptography based on the hardness of quantum learning.

1.7 Future directions

The connections between the hardness of quantum learning and cryptography leads to several in-
teresting directions that require more exploration:

• Relations between learning and cloning. We posed two concrete assumptions about the
hardness of quantum learning for random circuits. The natural open question that remains
is to understand the differences between these different learning tasks (No-Learning versus
No-cloning), their relative hardness, and to understand the security parameters needed for
the hardness assumptions.

• Quantum cryptography from concrete hardness assumptions. Innately quantum
hardness of learning assumptions, like the No-Learning and No-Cloning assumptions, give
a natural direction to give concrete instantiations of other cryptographic primitives on as-
sumptions that might be weaker than one-way functions.

• NISQ-friendly cryptography and practical applications. While several cryptographic
constructions presented in this paper are NISQ-friendly, others, such as for quantum bit
commitments, involve operations that are not realistic for near-term devices, for instance, co-
herently implementing a superposition over all quantum circuits. This leads to the tantalizing
possibility of finding other NISQ-friendly cryptographic primitives.

• Quantum pseudorandomness and connections to complexity. There are fundamental
open questions regarding pseudorandomness properties of states produced by random quan-
tum circuits. Using hardness of learning to probe such questions is an interesting open direc-
tion. Along this line of inquiry, one might further expect to find deeper connections between
learning, cryptography, pseudorandomness, state complexity classes and circuit lower bounds.
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2 Preliminaries

In this section, we give an overview of our notation, collect some useful facts, theorems, and lemmas,
that will be used in the rest of the paper.

Notation. We write [t] to denote the set {1, 2, . . . , t}. For an integer n we write 1n to denote its
unary representation. We write poly(n) to denote p(n) for some polynomial p. We write negl(n) to
denote a negligible function, that is, some function δ(n) such that for all polynomials p(n), for all
sufficiently large n, δ(n) ≤ 1

p(n) . In other words, δ(n) goes to 0 faster than any inverse polynomial.
The identity operator is denoted by I. For an operator A we write ∥A∥1 to denote its trace norm,

i.e., the sum of its singular values. For two density matrices ρ, σ we write F(ρ, σ) := Tr(
√√

ρσ
√
ρ)2

to denote the fidelity between them.

Quantum circuits. All quantum circuits in this paper use single- and two-qubit gates from some
discrete universal gate set that includes the Clifford group, i.e., the set of unitaries generated by

CNOT,H,S =

(
1 0

0 i

)
. The size of a circuit is the number of gates in it. We write Cn,d to denote

the set of all n-qubit, depth-d circuits where the gates are arranged in a 1D brickwork architecture.
We write Cn to denote the set Cn,d for d = log2(n). Sometimes we will omit the subscript n and

write C when the number of qubits is clear from context. We write C ← Cn to denote sampling
a uniformly random circuit C from Cn. For a circuit C ∈ Cn,d, we write |C⟩ to denote the state
resulting from applying C to the all zeroes input, i.e.,

|C⟩ := C|0n⟩ .

For a circuit C, we write Ĉ to denote its classical description (to distinguish it from the unitary
operator corresponding to C).

A quantum polynomial-time (QPT) algorithm A is a uniform family of circuits {Cn}n∈N such
that there is a polynomial p(n) such that the size of Cn is bounded by p(n) for all n. Here, uniform
means that there is a polynomial-time classical algorithm that, on input 1n, outputs the classical
description of Cn. In a QPT algorithm, we also allow the circuits to initialize some number of
ancilla qubits to |0⟩ and trace them out at the end of the computation (and thus a QPT algorithm
in general corresponds to a quantum channel).

Classical shadows. The classical shadows protocol of [HKP20] gives a method to perform mea-
surements on a small number of copies of a quantum state ρ, and use the measurement outcomes
to estimate the expectation values of ρ with respect to a much larger number of observables. The
method is sample efficient, but not necessarily computationally efficient. We first summarize their
protocol.
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Protocol 2.1. Classical shadows protocol

Parameters: k, t integers such that t divides k.
Observables: A1, . . . , AM .
Input: k copies of an n-qubit state ρ.

1. Sample k random Clifford circuits S1, . . . , Sk. Applying Sj to the j’th copy of ρ and
measure in the standard basis to obtain sample xj ∈ {0, 1}n.

2. For each j ∈ [k], compute the classical description of the Hermitian matrix called a
shadow :

ρ̂j = (2n + 1)S†j |xj⟩⟨xj |Sj − I.

3. Divide the k samples into t groups of k/t, and for each group r ∈ [t], and each observable
i = 1, . . . ,M , compute the following estimator:

â
(r)
i =

t

k

kr/t∑
j=1+k(r−1)/t

Tr(Aiρ̂j) .

4. For each i = 1, . . . ,M , compute the final estimator

âi = median
{
â
(1)
1 , . . . , â

(t)
1

}
(2.1)

Lemma 2.2 (Performance of the classical shadows protocol). Let {A1, . . . , AM} denote a set of
n-qubit observables, i.e., each Aj is a Hermitian matrix. Then the classical shadows protocol of
Protocol 2.1 will with probability at least 1 − δ produce estimates {â1, . . . , âM} such that |âi −
Tr(Aiρ)| ≤ ε provided that

k ≥ 204

ε2
log
(2M
δ

)
B and t ≥ 2 log

(2M
δ

)
where B = maxiTr((Ai − 2−nTr(Ai)I)2).

Proof. This is proved in the the Supplementary Information of [HKP20].

Corollary 2.3. Let Cn,d denote the circuit ensemble described in Section 2. There exists a quantum
algorithm that, given input |C⟩⊗k where |C⟩ = C|0n⟩ for some circuit C ∈ Cn,d, with probability at
least 1− δ outputs a classical description of a circuit D ∈ Cn,d such that

|⟨C|D⟩|2 ≥ 1− ε

provided that

k ≥ O
(

1

ε2
log
( |Cn,d|

δ

))
.

Furthermore, if NP#P ⊆ BQP this task can be done in quantum polynomial time.
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Proof. This follows directly from Lemma 2.2 where, enumerating the circuits as Cn,d = {C1, C2, . . .},
we define the observable

Ai = Ci|0n⟩⟨0n|C†i .

The quantity B in the statement of Lemma 2.2 can be upper-bounded by a constant O(1), leading
to the stated sample complexity bounds.

On input |C⟩⊗k, the quantum algorithm will run the classical shadows protocol, and obtain
estimates {âi}. With probability 1 − δ there is at least one index i such that âi ≥ 1 − ε (namely,
the one corresponding to the circuit C that generated the input state), so the algorithm can pick
one arbitrarily (e.g. randomly selecting one) and outputting the corresponding circuit description.

We now consider the complexity of this algorithm. Observe that, as stated, the algorithm uses
exponential time, simply for computing the estimates âi for all observables A1, . . . , AM , of which
there are exponentially many. We can reformulate this algorithm so that it runs in polynomial-time,
assuming that NP#P ⊆ BQP.

Consider the following decision problem: given shadows (S1, x1), . . . , (Sk, xk) (i.e. descriptions
of n-qubit Clifford circuits along with an n-bit string) and integers 1 ≤ x < y ≤ M represented
in binary, decide if there exists an x ≤ i ≤ y such that the corresponding estimator âi defined
in Equation (2.1) is at least 1 − ε. Note that each i ∈ [M ] the estimator âi can be computed
in polynomial-time given an oracle for #P. Therefore a nondeterministic polynomial-time Turing
machine with an oracle to #P can nondeterministically guess an index i such that âi ≥ 1− ε.

Thus if NP#P ⊆ BQP, the quantum algorithm can perform the shadow measurements, and then
perform binary search in polynomial time to identify such an index i with high probability. This
concludes the “Furthermore” part of the corollary.

Note that by the results of an independent recent work, by Hiroka and Hsieh [HH24], the complexity
theoretic inclusion can be improved to PP ⊆ BQP.

3 Black-box lower bounds for quantum learning and cloning

In this section, we give evidence for our hardness of learning conjectures by proving lower bounds in
the black-box model that amongst other attack rule out efficient shadow tomography type attacks.
We first introduce the black-box setting where we model output states of sufficiently deep random
circuits by a Haar random state.
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Query algorithm with a state preparation oracle

1. Independently sample N = 2n many n-qubit Haar random states S = {|ψ1⟩, . . . , |ψN ⟩}.
Also, independently sample a uniformly random index J ∈ [N ].

2. The quantum algorithm is given some k = poly(n) copies of the target state |ψJ⟩ and
black-box access to a state preparation oracle that generates each |ψi⟩ in the following
way:

OS |i⟩|0⟩ = |i⟩|ψi⟩.

We can implement the above oracle unitarily by arbitrarily extending each |ψi⟩ to an
independent random basis of (C2)⊗n.

3. The output state of a T -query quantum algorithm in this model, just before the final
measurement, can be expressed as

UT+1(OS ⊗ I) · · · (OS ⊗ I)U2(OS ⊗ I)U1|ψJ⟩⊗k|0m⟩,

where m = poly(n) is the number of ancillas. The unitaries Ui’s are arbitrary fixed
unitaries that do not depend on J or S.

We now formalize our learning tasks in the black-box setting.

Quantum learning task. The algorithm succeeds if it outputs an index i ∈ [N ] such that
|⟨ψi|ψJ⟩|2 is non-negligible in n.

Cloning task. The algorithm succeeds if it outputs a state |ξ⟩ on n(k+1) qubits, such that
|⟨ξ|ψ⊗k⟩|2 is non-negligible in n.

To motivate the above black-box setting, we note that the Haar random state models the output
state of the random circuit and the random index J above is the analog of the random circuit C.
Furthermore, the inefficient shadow tomography based algorithm to learn the circuit in the white-
box setting (see Section 2) has an analog in the black-box model as well. We only give a sketch of the
algorithm which solves the state learning task: first take an epsilon net N = {|ϕ1⟩, |ϕ2⟩, · · · , |ϕM ⟩}
of the complex unit sphere in N = 2n dimensions where ϵ = 1/poly(n) and M = (C/ε)N for
some universal constant C. Then, using the classical shadows algorithm of [HKP20] with the
observables {|ϕi⟩⟨ϕi|}Mi=1, learn an index r such that the overlap |⟨ϕr|ψJ⟩| ≥ 1/poly(n). Note that
only k = poly(n) samples of the input state |ψJ⟩ are needed for this. Finally, by querying the oracle
OS exponentially many times and measuring the overlap with the state |ϕr⟩, learn the index J .
After learning the index J , one can solve the cloning task with non-negligible probability as well.
Note that this algorithm can even be implemented non-adaptively.

There are several more modifications one could make to the above black-box model to make it
more in line with the white-box model. For example, the choice of the parameter N above could
be changed to further model the fact that there are many more than 2n circuits acting on n qubit
states. Or one could plant a small number of states that are correlated with each of the Haar random
states to model the fact that the output states of circuits may have some non-trivial overlaps with a
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few other ones. The results proven below are robust to such changes, at least for the examples given
above. We have mostly opted for the choices made here for the purposes of presenting a cleaner
analysis.

Theorem 1.5 (Black-box lower bounds for cloning). There exists a state preparation oracle O such
that all T -query quantum query algorithms getting k copies of |ψJ⟩ for a uniformly random index
J ∈ [2n] satisfy

F(ρ, |ψJ⟩⟨ψJ |⊗k+1) ≤ 2−n/4(2T + k + 1)

where ρ is the output of the query algorithm and F(·) denotes the fidelity function.

To prove the above result, it suffices to look at the cloning task, since a query-efficient algorithm
for the state learning task can be used to obtain a query-efficient algorithm for the former.

3.1 Proof of Theorem 1.5

The proof proceeds in two parts: the first part follows a hybrid argument similar to [BBBV97] —
we show that up to a small error, the queries to the oracle can be replaced by queries to a different
oracle that does not depend on |ψJ⟩. The second part then argues the base case for the algorithm
which makes no queries and only uses the given copies of the input state. For the cloning lower
bound, we appeal to the well-known result about the optimal cloning probability of a Haar random
state [Wer98].

Hybrid argument. Let N = 2n. A T -query algorithm starts in the initial state

|ϕ(0)⟩ = |ψJ⟩⊗k ⊗ |0 · · · 0⟩,

and the state after t ∈ [T ] queries is given by

|ϕ(t)⟩ = (OS ⊗ I)Ut−1 · · · (OS ⊗ I)U1(OS ⊗ I)U0|ϕ(0)⟩,

where U1, . . . , UT+1 are fixed unitaries.
We will show that calls to the state preparation oracle OS can be replaced with calls to another

oracle O′S . Towards this end, we consider the following oracle O′S :

O′S |i⟩|0⟩ = |i⟩|ψi⟩, for all i ̸= J

O′S |J⟩|0⟩ = |i⟩|ψ′⟩,

where |ψ′⟩ is a Haar random state sampled independently of J and S. Note that all the random
variables J,S = {|ψi⟩}Ni=1 and |ψ′⟩ are independent and the oracle O′S above can be implemented
unitarily as before, by extending |ψ′⟩ to a random basis independent of {|ψi⟩}Ni=1 and J .

Defining
|ϕ′(t−1)⟩ = (O′S ⊗ I)Ut−1 · · · (O′S ⊗ I)U1(O

′
S ⊗ I)U0|ϕ(0)⟩,

we will show that on average over the choice of J,S, |ϕ′⟩, the following holds

E
[∥∥∥|ϕ(t−1)⟩ − |ϕ′(t−1)⟩∥∥∥] ≤ ϵt where ϵt =

2t√
N
. (3.1)
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The statement is trivially true when no queries are made, so consider any t ∈ [T ]. Then, using
the triangle inequality,

E
[∥∥∥|ϕ(t)⟩ − |ϕ′(t)⟩∥∥∥] ≤ E

[∥∥∥|ϕ(t)⟩ − (OS ⊗ I)Ut|ϕ′(t−1)⟩
∥∥∥]

+ E
[∥∥∥(OS ⊗ I)Ut|ϕ′(t−1)⟩ − |ϕ′(t)⟩

∥∥∥] , (3.2)

Note that |ϕ(t)⟩ = (OS ⊗ I)Ut|ϕ(t−1)⟩, thus by the unitary invariance of the Euclidean norm, the
induction hypothesis implies that the first term is at most εt−1. We now bound the second term

E
[∥∥∥(OS ⊗ I)Ut|ϕ′(t−1)⟩ − |ϕ′(t)⟩

∥∥∥] = E
[∥∥∥(OS ⊗ I)Ut|ϕ′(t−1)⟩ − (O′S ⊗ I)Ut|ϕ′(t−1)⟩

∥∥∥] .
Let us write

|ξ(t−1)⟩ := Ut|ϕ′(t−1)⟩ =
N∑
i=1

|i⟩|ξ′(t−1)i ⟩,

for some sub-normalized states |ξ′(t−1)i ⟩ satisfying
∑N

i=1 ∥|ξ′
(t−1)
i ⟩∥2 = 1. Note that∥∥∥(OS ⊗ I)Ut|ϕ′(t−1)⟩ − (O′S ⊗ I)Ut|ϕ′(t−1)⟩
∥∥∥ ≤ 2

∥∥∥|ξ′(t−1)J ⟩
∥∥∥ ,

since OS ⊗ I and O′S ⊗ I act the same on all states of the form |i⟩|ϕ⟩ where i ̸= J .
Thus, plugging this in (3.2),

E
[∥∥∥|ϕ(t)⟩ − |ϕ′(t)⟩∥∥∥] ≤ εt−1 + 2 · E

[∥∥∥|ξ′J (t−1)⟩∥∥∥] .
Note that J was sampled uniformly from [N ] and independently of S and |ψ′⟩ which are i.i.d.

Haar random states. By symmetry, it follows that J is uniformly distributed in [N ] conditioned on
O′S and |ψ′⟩. Since the state |ξ′(t−1)⟩ is determined by the choice O′S and |ψ′⟩, it follows that

E
[∥∥∥|ϕ(t)⟩ − |ϕ′(t)⟩∥∥∥] ≤ εt−1 + 2

N
· E

[
N∑
i=1

∥∥∥|ξ′(t−1)i ⟩
∥∥∥]

≤ εt−1 +
2

N
·
√
N · E


√√√√ N∑

i=1

∥∥∥|ξ′(t−1)i ⟩
∥∥∥2


≤ εt−1 +
2√
N

=
2t√
N

= εt.

Note that the expectation on the right hand side is only taken over the choice of the oracle O′S and
|ψ′⟩.

Recalling N = 2n, it follows by Markov’s inequality that with probability at least 1− 2−n/4, the
states after T queries are 2T · 2−n/4-close in the Euclidean norm after replacing the oracle OS with
O′S .

23



Base case. Now we consider algorithms for the cloning task that receive k copies of the input
state |ψJ⟩ and query the oracle O′S . Since |ψJ⟩ is independent of O′S and the index J , observe that
any such quantum algorithm defines a cloning channel for a Haar random state, i.e., a quantum
channel that takes k copies of an n-qubit Haar random state and outputs a mixed state ρ on (k+1)n

qubits that should be close to (k + 1) copies of the input state. By the well-known results about
the optimal cloning of Haar random states [Wer98], it follows that

F(ρ, |ψJ⟩⟨ψJ |⊗(k+1)) ≤
(
2n+k−1

k

)(
2n+k
k+1

) ≤ k + 1

2n + k
≤ k · 2−n.

Combining the hybrid argument and the base case, it follows that for the cloning task, the success
probability is at most 2T · 2−n/4 + 2−n/4 + k · 2−n ≤ 2−n/4(2T + k + 1). This completes the proof
of Theorem 1.5.

4 Cryptography from hardness of quantum learning

In this section, we lay out the cryptographic objects we can construct from our hardness of learning
conjectures.

4.1 One-way state generators

The conjecture about the hardness of learning is essentially equivalent to the existence of one-
way state generators (OWSGs). These are a quantum analogue of one-way functions, which are
functions efficiently computable in the forwards direction but computationally difficult to invert.
We first recall the formal definition of a OWSG, a primitive first introduced by Morimae and
Yamakawa [MY22b, MY22a].

Definition 4.1 (One-way state generator). A one-way state generator G is a pair of QPT algorithms
(Gen,Ver) such that there exists polynomials r(n),m(n) such that

• Gen (called the generator) takes as input the security parameter 1n in unary, a string k ∈
{0, 1}r(n) called a key, and outputs a m(n)-qubit pure quantum state |ψk⟩.

• Ver (called the verification) takes as input the security parameter 1n in unary, a key k ∈
{0, 1}r(n) and an m(n)-qubit state |ψ⟩, and accepts or rejects.

We say that a OWSGG satisfies correctness if for all security parameters n, for all keys k ∈ {0, 1}r(n),

P
[
Ver(1n, k,Gen(1n, k)) accepts

]
≥ 1− negl(n) .

We say that G has security error γ(n) if for all polynomials q(n), for all QPT algorithms A, for all
sufficiently large n,

P

Ver(1n, k′, |ψk⟩) accepts :
k ← {0, 1}r(n)
|ψk⟩ ← Gen(1n, k)

k′ ← A(|ψk⟩⊗q(n))

 ≤ γ(n) .
We say that G is cryptographically secure if it has security error that is negligible in n (i.e., it goes
to zero faster than 1/ poly(n)).
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Remark 4.2. For simplicity we often omit the security parameter 1n as an input to Gen,Ver when
it is clear from context.

Let r(n) be a polynomial such that r(n) bits are sufficient to describe a circuit from the family
Cn. We define a OWSG G = (Gen,Ver) based on random circuits.

Protocol 4.3. Random circuit OWSG

Gen: Given input key C ∈ {0, 1}r(n), interpret it as a description of an n-qubit circuit C
from the ensemble Cn (defined in Section 2). Output |C⟩ = C|0n⟩.
Ver: Given input C ∈ {0, 1}r(n) and a state |D⟩ on n qubits, apply C† to the state, and
measure. Accept if the result is all zeroes, and reject otherwise.

It is clear that the algorithms Gen,Ver run in polynomial time. It is also easy to see that G
has perfect correctness. We now argue that the security of the OWSG is essentially equivalent to
Computational No-Learning Assumption (Conjecture 1.1). The level of security corresponds to the
strength of the hardness conjecture.

Lemma 4.4 (Equivalence between hardness of learning and random circuit OWSG security). As-
suming ε-No-Learning (Conjecture 1.1), the random circuit OWSG has security error (2 − ε)ε.
Conversely, if the random circuit OWSG has security error γ, then the √γ-No Learning Assump-
tion holds.

Proof. To prove (weak) security, assume for contradiction there exists a QPT adversary A and a
polynomial q(n) such that for infinitely many n,

P

[
Ver(D, |C⟩) accepts :

C ← Cn

D ← A(|C⟩⊗q(n))

]
> (2− ε)ε

The acceptance probability of the verification circuit can be written as:

E
D←A(|C⟩⊗q(n))

|⟨C|D⟩|2 > (2− ε)ε .

This implies that the probability over the choice of D output by A(|C⟩⊗q(n)) that |⟨C|D⟩|2 ≥ ε is
greater than ε for infinitely many n. This contradicts Conjecture 1.1.

Conversely, assume for contradiction that the random circuit OWSG has security error γ, but
there exists a QPT algorithm A such that

P

[
|⟨C|D⟩|2 ≥ √γ :

C ← Cn

D ← A(|C⟩⊗ poly(n))

]
>
√
γ .

This implies that

P

[
Ver(D, |C⟩) accepts :

C ← Cn

D ← A(|C⟩⊗q(n))

]
> γ

which contradicts the security of the OWSG.
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When ε ≥ 1/poly(n), then we consider the resulting OWSG from Lemma 4.4 to have weak
security, as it implies that a QPT adversary could potentially produce a non-negligible approxima-
tion of |C⟩ with non-negligible probability. To obtain a cryptographically secure OWSG, we need to
amplify it so that all QPT adversaries can only succeed with at most negligible probability.

A standard way to amplify the security of a weak OWSG is via parallel repetition: now the key to
the amplified OWSG corresponds to a t-tuple of independently chosen random circuits (C1, . . . , Ct),
and the output is the tensor product of the corresponding states |C1⟩ ⊗ · · · ⊗ |Ct⟩. Verification
proceeds by checking that the i’th block of n qubits is in the state |Ci⟩ for each i = 1, . . . , n.
Intuitively, if it is somewhat hard to learn the output of one random quantum circuit, then it
should be very hard to simultaneously learn the output of many random quantum circuits. This
intuition holds true and the parallel repetition of OWSGs is formally analyized in Morimae and
Yamakawa [MY22a], who showed that if a OWSG G has security error γ, then the t-fold repetition
of G, denoted by Gt, has security error ≈ γt (up to additive errors that are negligible in n). (This
is also implied by the general quantum hardness amplification result of [BQSY24]).

Theorem 4.5. Assuming ε-No-Learning for ε ≤ 1− 1
poly(n) , there exists a cryptographically secure

one-way state generator.

Proof. Assuming ε-No-Learning, by Lemma 4.4 there exists a weak OWSG G with security error
(2− ε)ε. Let

t =
log2(n)

log 1
(2−ε)ε

.

When ε ≤ 1−1/ poly(n), the quantity t is at most poly(n). Consider the following OWSG Ĝ, which
is simply the original OWSG G repeated t times in parallel.

Protocol 4.6. (Strong) one-way state generator

Gen: Given input key (C1, . . . , Ct) ∈ ({0, 1}r(n))t, interpret it as a description of a t-tuple of
n-qubit circuits from the ensemble Cn. Output |C1⟩ ⊗ · · · ⊗ |Ct⟩.
Ver: Given input (C1, . . . , Ct) ∈ ({0, 1}r(n))t and a state |D⟩ on nt qubits, apply C†1⊗· · ·⊗C

†
t

to the state, and measure. Accept if the result is all zeroes, and reject otherwise.

By the result on hardness amplification of OWSGs by Morimae and Yamakawa [MY22a] (al-
ternatively, by the quantum parallel repetition theorem of [BQSY24]), the security error of Ĝ is at
most (

(2− ε)ε
)t

+ negl(n) = 2− log2(n) + negl(n) .

Note that 2− log2(n) goes to 0 faster than any inverse polynomial 1/ poly(n), and thus Ĝ has negligible
security error.

4.2 Quantum bit commitments

In this section we explore the cryptographic implications of our second hardness assumption, the
Computational No-Cloning Assumption (Conjecture 1.2). We show that No-Cloning directly implies
the existence of secure quantum bit commitments.
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We formally define quantum bit commitment schemes. In this paper we only define a special
kind known as noninteractive quantum commitments; while quantum commitment schemes can be
interactive in general, it was shown by [Yan22] that in the quantum setting they can always be
generically compiled to a simple noninteractive protocol8.

Definition 4.7 (Noninteractive quantum bit commitment). A noninteractive quantum bit commit-
ment scheme (or a commitment scheme for short) Com is a QPT algorithm that takes as input a
security parameter 1n and a bit b ∈ {0, 1}, and behaves as follows: it applies a unitary Un,b to the
all zeroes state, obtaining a bipartite pure state |ψb⟩ on registers AB.

We say that a commitment scheme Com satisfies correctness if for all security parameters n, for
all b ∈ {0, 1},

|⟨ψ0|ψ1⟩|2 ≤ negl(n)

where |Cb⟩ is the output of Com(1n, b). We say that Com satisfies ε-statistical hiding if

F(ρ0, ρ1) ≥ 1− ε(n)

where F(·, ·) is the fidelity between two density matrices, and ρb is the reduced density matrix of
|ψb⟩ on register B. We say that Com satisfies δ-computational binding if for all QPT adversaries A,
for all sufficiently large n,

F(|ψ0⟩⟨ψ0|, (An ⊗ I)(|ψ1⟩⟨ψ1|)) ≤ δ(n)

where An denotes running A with security parameter 1n and it takes as input register A of |ψ1⟩.

For the remainder of this section, we will simply refer to noninteractive commitment schemes
as simply a commitment scheme. We only defined the notion of commitments with statistical
hiding and computational binding; there is also the other “flavor” of commitments such as compu-
tational hiding and statistical binding. These flavors can be efficiently switched in a blackbox way;
see [Yan22, HMY23] for a proof.

We note that at least one of the hiding or binding properties must rely on computational hard-
ness assumptions [BCMS97]; in other words, there do not exist quantum commitment schemes that
are both statistically hiding as well as statistically binding. For an exploration of the complexity-
theoretic underpinnings of the security of quantum commitment schemes, see Bostanci, et al. [BEM+23].

We now define a commitment scheme based on random circuits. Recall that Cn is the ensemble
of n-qubit quantum circuits as defined in Section 2. To distinguish between a classical description
of a circuit and the state generated by the circuit, we use the following notation: |Ĉ⟩ denotes the
standard basis state of r(n) = log |Cn| qubits that represents the classical description of the circuit
C, and |C⟩ = C|0n⟩ denotes the state output by the circuit on the all zeroes input. In what follows,
we set k = O(ε−2 log |Cn|/ε) = O(n log2 n) for some ε = 1/poly(n) to be determined later.

8It is worth noting that this transformation is not generically possible in the classical setting!
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Protocol 4.8. Commitment scheme based on random circuits

Com(1n, b): If b = 0, then prepare the state

|ψ0⟩AB :=
1√
|Cn|

∑
C∈Cn

(
|C⟩⊗k ⊗ |0n⟩

)
A
⊗ |Ĉ⟩B .

If b = 1, then prepare the state

|ψ1⟩AB :=
1√
|Cn|

∑
C∈Cn

|C⟩⊗(k+1)
A ⊗ |Ĉ⟩B .

It should be clear that for each b ∈ {0, 1} there is an efficiently computable unitary Un,b that
prepares |ψb⟩ from the all zeroes state. Therefore Com is a QPT algorithm.

We argue the correctness property of Com.

Claim 4.9. The commitment scheme of Protocol 4.8 satisfies correctness.

Proof. We evaluate the overlap between |ψ0⟩, |ψ1⟩:

|⟨ψ0|ψ1⟩|2 =
∣∣∣ 1

|Cn|
∑
C∈Cn

⟨C|0n⟩
∣∣∣2

≤
( 1

|Cn|
∑
C∈Cn

|⟨C|0⟩|
)2

≤ 1

|Cn|
∑
C∈Cn

|⟨C|0⟩|2

= Tr
( 1

|Cn|
∑
C∈Cn

|C⟩⟨C| · |0n⟩⟨0n|
)

=
1

2n

where we used the property that the uniform distribution over Cn forms a 1-design; here we use
the fact that the gate set includes all Cliffords and therefore all Pauli operators. The uniform
distribution over Cn is then invariant under applying a layer of random Pauli operators on each
qubit at the end of each circuit.

We now analyze the statistical hiding property of the commitment scheme.

Claim 4.10. The commitment scheme of Protocol 4.8 satisfies 4ε-statistical hiding.

Proof. Let ρ0, ρ1 denote the reduced density matrices of |ψ0⟩, |ψ1⟩ on register B. To bound the fi-
delity between ρ0, ρ1, we use Uhlmann’s theorem [Uhl76], which implies that for all unitary operators
U acting on register A and an ancilla register E (consisting of r qubits), we have

F(ρ0, ρ1) ≥ |⟨0r, ψ0|EAB (UEA ⊗ IB) |0r, ψ1⟩EAB|2 .

Here, |0r, ψb⟩⟩ is simply shorthand for pre-pending r ancilla qubits to the state |ψb⟩.
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To give a lower bound it suffices to describe some local unitary operator U that, with some
ancillas, maps |ψ0⟩ to have large overlap with |ψ1⟩. At a high level, the unitary U will coherently
run the classical shadows protocol of Huang, Kueng, and Preskill [HKP20] as described in Section 2
on the k copies of |C⟩ in order to obtain a classical description of a circuit D such that |D⟩ ≈ |C⟩.
Controlled on this description, a copy of |D⟩ is synthesized. Since |D⟩ is close to |C⟩ with very high
probability, the intermediate work of the classical shadows protocol can be uncomputed with high
fidelity.

In more detail, the unitary U behaves as follows. Given input |C⟩⊗k (plus some ancillas), the
circuit-learning algorithm from Corollary 2.3 can be purified to be a unitary operator V that is run
coherently to yield

V (|0r⟩ ⊗ |C⟩⊗(k−1))⊗ |C⟩ ⊗ |0n⟩ =
∑

D∈Cn

√
pC,D|ϑC,D⟩ ⊗ |D̂⟩ ⊗ |C⟩ ⊗ |0n⟩

where pC,D is the probability that running the algorithm V on |C⟩⊗(k−1) outputs D, the state |D̂⟩
is the classical description of D, and the state |ϑC,D⟩ is the post-measurement state after measuring
D̂. Controlled on |D̂⟩, the inverse D† can be applied to the remaining copy of |C⟩, and a copy of
|D⟩ can be synthesized to yield∑

D∈Cn

√
pC,D|ϑC,D⟩ ⊗ |D̂⟩ ⊗D†|C⟩ ⊗ |D⟩ .

The last two n-qubit registers are swapped to yield:∑
D∈Cn

√
pC,D|ϑC,D⟩ ⊗ |D̂⟩ ⊗ |D⟩ ⊗D†|C⟩ .

Finally, applying the inverse V † we get∑
D∈Cn

√
pC,DV

†(|ϑC,D⟩ ⊗ |D̂⟩)⊗ |D⟩ ⊗D†|C⟩ .

This concludes the description of the unitary U . We can now compute the inner product between
U |ψ0, 0 · · · 0⟩ and |ψ1, 0 · · · 0⟩. We rearrange the ancillas for notational convenience:

⟨0r, ψ1, 0
n|
( 1√
|Cn|

∑
C,D∈Cn

√
pC,DV

†(|ϑC,D⟩ ⊗ |D̂⟩)⊗ |D⟩ ⊗D†|C⟩
)
⊗ |Ĉ⟩

=
1

|Cn|
∑

C,D∈Cn

√
pC,D(⟨0r| ⊗ ⟨C|⊗k)V †(|ϑC,D⟩ ⊗ |D̂⟩) ⟨C|D⟩ ⟨0n|D†|C⟩

=
1

|Cn|
∑

C,D∈Cn

pC,D |⟨C|D⟩|2 .

Note that
∑

D∈Cn
pC,D|⟨C|D⟩|2 is the expected overlap between the state of the circuit D output

by the classical shadows protocol and the state |C⟩; by Corollary 2.3 this is at least (1− ε)2. Thus
the fidelity between ρ0, ρ1 is at least (1− ε)4 ≥ 1− 4ε. This concludes the proof of Claim 4.10.

Finally, we prove that the commitment scheme is secure under the No-Cloning Assumption.
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Claim 4.11. The δ-No-Cloning Assumption (Conjecture 1.2) implies that the commitment scheme
from Protocol 4.8 satisfies (2− δ)δ-computational binding.

Proof. Suppose there was a QPT adversary A that for infinitely many n ∈ N,

F(|ψ0⟩⟨ψ0|, (An ⊗ I)(|ψ1⟩⟨ψ1|)) > 2δ(n) .

Purifying the algorithm A to include ancillas, there exists a unitary V and a pure state |ϑ⟩ such
that

|⟨ϑ, ψ0|(V ⊗ I)|0r, ψ1⟩|2 ≥ (2− δ(n))δ(n) .

This however means that

1

|Cn|
∑
C∈Cn

∣∣∣(⟨ϑ| ⊗ ⟨C|⊗(k+1))V (|0r⟩ ⊗ |C⟩⊗k ⊗ |0n⟩)
∣∣∣2 > (2− δ(n))δ(n)

by Jensen’s inequality. This implies that the algorithm A satisfies, for infinitely many n,

P

[
|⟨C|⊗(k+1)|ϕ⟩|2 ≥ δ(n) : C ← Cn

|ϕ⟩ ← A(|C⟩⊗k)

]
> δ(n)

which contradicts the No-Cloning Assumption.

A converse? Does the computational binding security of Com imply the No-Cloning Assumption?
Intuitively, an efficient algorithm to clone outputs of random circuits (i.e., break the No-Cloning
Assumption) should be able to break the binding property of the commitment scheme Com. How-
ever, this requires that the cloning algorithm can be run coherently, without ancillary junk states
that are entangled with the the underlying circuit C – this is because breaking binding requires
coherently mapping |C⟩⊗k to as close to |C⟩⊗(k+1) as possible. This is not a priori guaranteed by
the fact that the No-Cloning Assumption was broken.

We summarize the conclusions of Claims 4.9, 4.10, and 4.11 below.

Lemma 4.12. The commitment scheme of Protocol 4.8 satisfies correctness, 4ε-statistical hiding,
and (assuming δ-No-Cloning) (2− δ)δ-computational binding.

One could ask whether the security guarantees of this commitment scheme could be improved.
Just like how we were able to amplify a weakly-secure OWSG to a cryptographically secure OWSG
via parallel repetition in Section 4.1, we would like to amplify the commitment scheme of Protocol 4.8
so that it has negligible error for both the hiding and binding properties.

Amplification of bit commitments is more subtle than with OWSGs, however, because there
are two different security properties to handle. In general, trying to amplify one security property
comes at the cost of degrading the other security property. For example, it was only recently
shown by Bostanci, Qian, Spooner, and Yuen [BQSY24] that the t-fold parallel repetition of a δ-
computational binding quantum commitment Com yields a new commitment scheme Comt with
roughly δt-computational binding. However, if the original commitment Com satisfied ε-statistical
hiding, then Comt satisfies tε hiding – it is now easier for the receiver to distinguish between
commitments to 0 and 1 (because now it has t chances to do so). This would be fine if ε were a
negligible quantity to begin with (i.e., the base commitment scheme had negligible hiding error),
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but in our case ε is at best an inverse polynomial quantity (this is due to the sample complexity of
the classical shadows protocol).

To perform the amplification, we take advantage of the “flavor switching” transformation for
quantum bit commitments, which allows us to take a quantum commitment of one flavor (e.g.,
statistical hiding, computational binding), and generically obtain a quantum commitment of the
other flavor (e.g., computational hiding, statistical binding) with only a small loss in parameters.

Lemma 4.13 (Flavor switching). If Com is a ε-statistical (resp. computational) hiding and δ-
computational (resp. statistical) binding quantum commitment, then there exists a commitment
Com′ that satisfies

√
δ-computational (resp. statistical) hiding and ε-statistical (resp. computa-

tional) binding.

Proof. This is proved in [HMY23, Theorem 7].

With this in hand we obtain the following amplification result:

Lemma 4.14. Assuming δ-No-Cloning for some δ(n) ≤ 1−1/p(n) for some polynomial p, there ex-
ists a cryptographically-secure quantum commitment scheme satisfying correctness, negl(n)-statistical
hiding and negl(n)-computational binding.

Proof. First, we choose ε(n) = (2np(n))−2 where p satisfies δ(n) ≤ 1 − 1
p(n) . Then assuming δ-

No-Cloning, Lemma 4.12 implies that the commitment scheme Com of Protocol 4.8 (with the k(n)
parameter chosen as a function of ε(n)) has 4ε-statistical hiding and (2−δ)δ-computational binding.

Let Com′ denote the np(n)2-fold parallel repetition of the commitment Com, which means
that the committer and receiver run np(n)2 parallel independent instances of Com. The parallel
repetition theorem of Bostanci, Qian, Spooner, and Yuen [BQSY24] implies that Com′ has 1

n -
statistical hiding and the computational binding security error is at most

((2− δ(n))δ(n))np(n)2 + negl(n) ≤
(
1− 1

p(n)2

)np(n)2
+ negl(n) ≤ e−Ω(n) + negl(n) = negl(n) .

Switching flavors (using Lemma 4.13), we get a commitment Com′′ with negl(n)-computational
hiding and 1

n -statistical binding. We then perform parallel repetition once again, repeating the
commitment Com′′ for n times in parallel to obtain a commitment Com′′′ where the computational
hiding security error is at most n · negl(n) = negl(n) and the statistical binding security error is
at most n−n = negl(n). The computational hiding bound is argued via a hybrid argument: if
there were an efficient algorithm A that could distinguish between ρ⊗n0 and ρ⊗n1 with non-negligible
advantage α where ρ0, ρ1 are the reduced density matrices seen by the receiver in Com′′, then via the
triangle inequality there exists a j ∈ [n] such that A can distinguish between ρ⊗j0 ⊗ρ0⊗ρ

⊗(n−j−1)
1 and

ρ⊗j0 ⊗ ρ1 ⊗ ρ
⊗(n−j−1)
1 with advantage at least α/n, which contradicts the negligible hiding security

error of Com′′.
The statistical binding bound is argued by viewing the binding security game of a commitment

scheme as a 2-message interactive protocol, and using the fact that parallel repetition reduces the
soundness error of such protocols at an exponential rate [KW00, Theorem 6].

Finally, we can switch flavors once more to obtain the final commitment Com′′′′, which satisfy
negl(n)-statistical hiding and negl(n)-statistical binding.
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5 NISQ-friendly quantum cryptography

5.1 NISQ-friendly one-way state generators

We take a step further and ask whether it is possible to obtain a OWSG that is both cryptograph-
ically secure and NISQ-friendly. NISQ-friendliness of a quantum cryptographic primitive generally
means that the correctness property of the primitive still holds even when the quantum algorithms
in the primitive (e.g., the key generation or verification algorithms) suffer from noise. We define
this notion for a OWSG.

Definition 5.1 (Noise-robust OWSG). Let N denote a noise model for quantum computers. We
say that a OWSG G = (Gen,Ver) is η(n)-robust against noise model N if for all security parameters
n, for all keys k ∈ {0, 1}r(n),

P
[
Ṽer(1n, k, G̃en(1n, k)) accepts

]
≥ η(n)

where G̃en and Ṽer denote the quantum channels corresponding to running the algorithms Gen,Ver

on a quantum computer with noise model N .

In realistic devices, noise rapidly degrades the fidelity of the signal. The fidelity between the
states produced by the noisy circuit and an ideal circuit could be 1/p(n) for some polynomial p(n),
which implies η(n) is also inverse polynomially small. This gives adversaries a greater leeway to
break the security of the construction as generating a state that only has inverse polynomial overlap
with the output is enough to pass the verification step. In this work, we show how to amplify
the security of the one way state generator even in this case. As discussed in Section 1, there
are experimentally realistic depth regimes and noise rates for which inverse polynomial fidelity is
reasonable due to the white noise phenomenon—for instance, see [AABea19, MVM+23, DHJB24].

What can we say about the security of the the OWSG in this regime? We have not changed
the OWSG construction, so the security guarantee still holds with respect to any polynomial-time
adversary, including noise-free ones. Suppose we assume ε-No-Learning for ε ≪ 1/p(n). This
assumption is consistent with what we know about the complexity of the learning task; as discussed
in Section 1.1, we do not know of an efficient algorithm that can, given polynomially-many copies
of the state |C⟩, to output a circuit description D that has fidelity any better than 2−Ω(n).

Even though the noisy quantum computer can only verify the outputs of the OWSG with small
probability (even when given the key), any efficient adversary – even a noise-free one – has a much
smaller probability of being able to invert the outputs of a OWSG. We now have an exploitable
gap: we can amplify a less noise robust OWSG to have high noise robustness, yet preserve security.

Parallel repetition is no longer a good amplification technique: although the amplified OWSG
Gt is secure against polynomial time adversaries, it may not be possible for honest adversaries
to successfully run the verification procedure of Gt on a noisy quantum computer: if the success
probability of a single verification of G is at η, then the success probability of t parallel verifications
is ηt, an exponentially small quantity.

We instead take the threshold repetition of G = (Gen,Ver); this is a OWSG Gt,k consisting of t
independent copies of G, but instead of verifying that all t copies have been inverted, the verification
algorithm checks that at least k out of the t have been inverted. We formally define the threshold
repetition OWSG Gt,k = (Gent,Vert,k) next. Let |ψk⟩ denote the output of Gen on input k (we
omit mention of the security parameter n for convenience).
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Protocol 5.2. Threshold one-way state generator Gt,k

Gent: Given input (k1, . . . , kt) ∈ ({0, 1}r(n))t, output |ψk1⟩ ⊗ · · · ⊗ |ψkt⟩.
Vert,k: Given input (k1, . . . , kt) ∈ ({0, 1}r(n))t and a state |D⟩ on nt qubits, for all i ∈ [t],
run the verification procedure Ver on the i’th block of n qubits with input ki. Accept iff at
least k of the individual verifications accept.

We now show that for an appropriate choice of t, k, the threshold repetition Gt,k has good noise
robustness and also good security. This proof relies on two types of Chernoff bounds. One is the
standard one (that the sum of independent random variables concentrates around their mean); this
is used to obtain the improved noise robustness. The other is a computational Chernoff bound,
which argues that if an efficient adversary has at most γ probability of inverting the output of a
OWSG, then an efficient adversary has an exponentially small probability of inverting significantly
more than γ fraction of t independent instances of the OWSG. In theoretical computer science and
cryptography, such a result is also known as a threshold direct product theorem (see, e.g., [IK10]).

Lemma 5.3. Let N denote a noise model for quantum computers such that independent, parallel
computations (i.e., they do not share qubits) experience independent noise. Let G = (Gen,Ver) be
a OWSG that is η(n)-robust against N and has security error γ(n) such that η(n)− γ(n) ≥ 1/p(n)

for some polynomial p(n). Then for all sufficiently large polynomials t(n), the threshold repetition
Gt,k for k(n) =

(
η(n) −

√
n

2t(n)

)
t(n) is (1 − O(2−n))-robust against N and has negligible security

error.

Proof. We sometimes omit mention of n for notational clarity, and write t = t(n), k = k(n), η = η(n),
etc.

We upper bound the probability that fewer than k out of t of the verifications fail to accept
in Gt,k. By the assumption on the noise model in the lemma statement, the acceptance of each
verification is a Bernoulli random variable Xi with bias at least η. Therefore by the Chernoff-
Hoeffding bound,

P [X1 + · · ·+Xt < k] = P

[
X1 + · · ·+Xt < ηt−

√
nt

2

]
≤ 2 exp (−Ω(n)) .

This establishes the noise robustness of Gt,k. We now argue about its security, using the following
computational Chernoff bound:

Lemma 5.4 (Computational Chernoff bound for OWSGs). Let ξ(n) denote an inverse polynomial,
i.e., ξ(n) = 1/p(n) for some polynomial p(n). Let G = (Gen,Ver) be a OWSG with security
error γ(n). Then for all sufficiently large polynomials t(n), the threshold OWSG Gt,k has negligible
security error, where k(n) = (γ(n) + ξ(n))t(n).

We prove Lemma 5.4 in Appendix A. Let ξ(n) := k(n)
t(n) − γ(n). Then

ξ(n) = η(n)−
√

n

2t(n)
− γ(n)

≥ 1

p(n)
−
√

n

2t(n)
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by our assumption on the gap η(n) − γ(n). For sufficiently large polynomials t(n), this is at least
1/p′(n) for some other polynomial p′(n). The conditions of Lemma 5.4 are satisfied, and therefore
for sufficiently large polynomial t(n), the threshold repetition Gt,k has negligible security error.

Combining this with our Computational No-Learning assumption, we obtain the following:

Corollary 5.5 (NISQ-friendly random circuit OWSG). Let N denote a noise model where for some
polynomial p, a n-qubit, depth-d circuit C can be run on the noisy quantum computer with fidelity
at least 1/p(nd). Assuming negl(n)-No-Learning, for a sufficiently large polynomial t(n), setting
k(n) =

(
1

p(nd) −
√

n
2t(n)

)
t(n), the threshold repetition Gt,k of the random circuit OWSG G from

Protocol 4.3 is (1−O(2−n))-robust against N and has negligible security error.

5.2 NISQ-friendly quantum digital signatures

Although one-way functions are a fundamental primitive in classical cryptography, they are not very
useful by themselves: their utility comes from being building blocks within cryptographic protocols
such as encryption, or pseudorandomness generation [Gol01]. Similarly, one-way state generators are
useful as building blocks within quantum cryptographic protocols, such as bit commitments [KT24a]
or digital signatures [MY22b]. Thus, we would like to realize the utility of a NISQ-friendly OWSG
by using it to obtain a NISQ-friendly quantum cryptographic protocol that is amenable to a real
world implementation.

We illustrate this possibility with a NISQ-friendly quantum digital signature scheme. At a high
level, a digital signature scheme is a method for a user to generate a signature for a message
in a way that a third party (using a public key posted by the user beforehand) can verify that
the signature belongs to the message (and in particular, the message or the signature have not
been changed). While it has been long known that digital signatures are constructible from one-
way functions [Lam79], Morimae and Yamakawa [MY22b] showed that one-way functions are not
necessary, and one can use a “fully quantum” primitive instead – namely, one-way state generators.

Here we instantiate the Morimae-Yamakawa digital signature construction with the NISQ-
friendly random circuit OWSG from Corollary 5.5. The security of the digital signature scheme
follows directly from the security analysis of [MY22b] and the Computational No-Learning assump-
tion. We furthermore argue that since the underlying OWSG is noise robust, so is the digital
signature scheme, meaning that it can be implemented on noisy quantum computers.

We first present the formal definition of a signature scheme with quantum public keys:

Definition 5.6. A signature scheme with quantum keys is a tuple of algorithms
(SKGen,PKGen,Sign,Ver) satisfying the following:

1. The classical randomized polynomial-time algorithm SKGen takes as input a security param-
eter 1n, and then outputs a secret key sk, which is a classical string.

2. The QPT algorithm PKGen takes as input a secret key string sk, and deterministically outputs
a quantum public-key state |pk⟩.

3. The classical randomized polynomial-time algorithm Sign takes as input a secret key sk and
a message m and outputs a classical signature σ.
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4. The QPT algorithm Ver takes as input a quantum public key |pk⟩, a message m and a
candidate signature σ and accepts or rejects.

We say that such a signature scheme satisfies correctness if for all security parameters n, for all
messages m,

P

Ver(|pk⟩,m, σ) accepts :
sk← SKGen(1n)

|pk⟩ ← PKGen(sk)

σ ← Sign(sk,m)

 = 1− negl(n) .

We now define a notion of one-time security for a signature scheme with quantum public-keys.
Intuitively, the security definition stipulates that a polynomial-time adversary, given copies of the
quantum public-key |pk⟩, a message m (which the adversary can choose) and its corresponding
signature σ, cannot produce a valid message-signature pair (m′, σ′) for some message m′ ̸= m with
non-negligible probability.

Definition 5.7. A signature scheme with quantum public keys (SKGen,PKGen, Sign,Ver) satisfies
one-time security if for all polynomials p(n), for all pairs of QPT algorithms A1, A2, the following
holds for sufficiently large n:

P

m′ ̸= m ∧Ver(|pk⟩,m′, σ′) accepts :

sk← SKGen(1n)

|pk⟩ ← PKGen(sk)

m← A1(|pk⟩⊗p(n))
σ ← Sign(sk,m)

(m′, σ′)← A2(|pk⟩⊗p(n),m, σ)

 = negl(n)

Operationally, a signature scheme with quantum keys is used as follows: there is one party called
the signer and many verifiers. First, the signer will generate a secret key sk and many copies of
the public key |pk⟩. The signer publishes the quantum public keys on some central website on the
(quantum) internet.

To sign a message m, the signer computes the classical signature σ ← Sign(sk,m) and publishes
the message/signature pair (m,σ) on the (classical) internet. To verify that the signature is valid,
anyone with a copy of |pk⟩ can run Ver(|pk⟩,m, σ). The one-time security property allows the
verifier to have confidence that, if the signer only used the secret key sk once to sign a message,
then the signature is valid.

With the definition of signature schemes and their security in hand, we now present our NISQ-
friendly signature scheme. For concreteness, we base it on the random circuit OWSG from Corol-
lary 5.5; let t, k be the parameters from the corollary. For simplicity we describe signatures for
single bit messages; this can be extended to many-bit messages in a straightforward way.
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Protocol 5.8. NISQ-friendly signature scheme with quantum public keys

SKGen. Sample 2t descriptions of quantum circuits C(b)
1 , . . . , C

(b)
t uniformly at random, for

both b = 0, 1. Set sk = (C
(b)
i )i∈[t],b∈{0,1}.

PKGen: Based on the value of sk, output the public key state

|pk⟩ :=
⊗
b

|C(b)
1 ⟩ ⊗ · · · ⊗ |C

(b)
t ⟩ .

Sign: To sign a bit b, output the classical descriptions of the the corresponding circuits. Let
σ = (C

(b)
1 , . . . , C

(b)
t ).

Ver: Given the public key |pk⟩, a bit b, and a candidate signature σ, first interpret σ as a
tuple (D1, . . . , Dt) where each Dj is a description of a circuit. For each j ∈ [t], apply D†j to

the n qubits of |C(b)
j ⟩, and measure the n qubits. If the result is all zeroes, then set Ej = 1,

otherwise set Ej = 0. If E1 + · · ·+ Et ≥ k, then accept. Otherwise, reject.

Lemma 5.9 (NISQ-friendly digital signatures). Let N denote the noise model from Corollary 5.5,
and assume the same ε-No-Learning conjecture as in the corollary. Then, the digital signature
scheme described in Protocol 5.8 satisfies correctness and one-time security. Furthermore, the
scheme it is noise-robust against N , in that the verification procedure succeeds with high probability,
even on a noisy quantum computer:

P

Ṽer(|pk⟩,m, σ) accepts :
sk← SKGen(1n)

|pk⟩ ← P̃KGen(sk)

σ ← Sign(sk,m)

 = 1− negl(n) .

Here Ṽer and P̃KGen denote the noisy executions of the algorithms Ver and PKGen on a quantum
computer with noise model N .

We don’t consider noisy versions of SKGen and Sign because these are entirely classical algo-
rithms, which we can run on a noiseless classical computer.

Proof. The correctness property is straightforward to verify, and the security of the digital signature
scheme follows from the security of the OWSG from Corollary 5.5 and the No-Learning Assumption.
The noise robustness of the digital signature verification follows from the noise robustness of the
underlying OWSG proved in Corollary 5.5.
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A A computational Chernoff bound for one-way state generators

In this section we prove a computational Chernoff bound for one-way state generators. Roughly
speaking, this states that if it is hard to efficiently invert a OWSG G with probability more than γ,
then it is hard to efficiently invert noticeably more than γ fraction of instances of the repeated OWSG
Gt with non-negligible probability. The reason that this is called a “Chernoff bound” is because it is
analogous to proving that the probability a sum of independent, bounded random variables deviates
far from its mean is exponentially small. The reason this bound is “computational” is because it only
applies to efficient algorithms. This is also commonly known as a threshold direct product theorem
in complexity theory and cryptography [IK10].

This is a strengthening of the OWSG hardness amplification results of Morimae and Yamakawa [MY22a]
which states that it is not possible to efficiently invert all t instances of the repeated OWSG Gt with
non-negligible probability. Morimae and Yamakawa raised the question of whether a thresholded
version of their result can be proven; we answer this affirmatively.

Let G = (Gen,Ver) be an OWSG, and let |ψk⟩ denote the output of G on input k (we omit
mention of the security parameter n for convenience). We defined the corresponding threshold
repetition, denoted by Gt,k, in Protocol 5.2. The following lemma bounds its security error.

Lemma A.1 (Computational Chernoff bound for OWSGs). Let ξ(n) denote an inverse polynomial,
i.e., ξ(n) = 1/p(n) for some polynomial p(n). Let G = (Gen,Ver) be a OWSG with security
error γ(n). Then for all sufficiently large polynomials t(n), the threshold OWSG Gt,k has negligible
security error, where k(n) = (γ(n) + ξ(n))t(n).

Proof. Throughout this proof we omit the dependence on n and simply write t = t(n), k = k(n), γ =

γ(n), ξ = ξ(n), etc. Furthermore for notational convenience we write

|ψk1,...,kt⟩ := |ψk1⟩ ⊗ · · · ⊗ |ψkt⟩

for a tuple of keys (k1, . . . , kt).
We prove this via contradiction. Suppose there was a polynomial q = q(n) and a QPT algorithm

A such that for infinitely many n,

P

[
Vert,k

(
A(|ψk1,...,kt⟩⊗q), |ψk1,...,kt⟩

)
:

(k1, . . . , kt)← ({0, 1}r)t
|ψk1,...,kt⟩ ← Gent(k1, . . . , kt)

]
≥ 1

q

We now construct a QPT algorithm B that inverts the original OWSG G with probability
noticeably greater than γ, which is a contradiction. We closely follow the analysis of the so-called
Threshold Direct Product Theorem (which is another name for a computational Chernoff bound)
by Impagliazzo and Kabanets [IK10].

This algorithm B is constructed in two stages. We first construct an algorithm A′ that tries
to solve t/2 copies of G, but it either outputs ⊥, or with high probability inverts ∼ γ fraction of
instances. Then, in the second stage we design the algorithm B for a single instance of G that uses
the zero error algorithm A′ as a subroutine.

First stage. We first construct the “zero error” algorithm A′. The reason it is called “zero error”
is because the algorithm either outputs ⊥ or outputs (with high probability) a tuple of keys that
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passes verification in at least ∼ γ fraction of coordinates. Furthermore, there is a non-negligible
probability of outputting a tuple of keys.

Protocol A.2. The “zero error” algorithm A′

Input: (4q ln 8q) · (q + 1) copies of |ψk1⟩ ⊗ · · · ⊗ |ψkt/2⟩.

1. Sample keys kt/2+1, . . . , kt ∈ {0, 1}r(n).

2. Run the generation algorithm Gen of the OWSG G on the keys to obtain q copies of
the output states |ψkt/2+1

⟩ ⊗ · · · ⊗ |ψkt⟩.

3. Sample a random permutation π on [t].

4. Run the algorithm A on input
⊗

i∈[t] |ψkπ(i)
⟩⊗q to obtain a tuple of candidate keys

(k′π(1), . . . , k
′
π(t)). In other words, the copies of |ψki⟩ states are permuted according to

π before being passed into A, and the output of A is unpermuted according to π.

5. Run the threshold verification procedure Vert/2,γt/2 on input
((k′t/2+1, . . . , k

′
t), |ψkt/2+1,··· ,kt⟩). If it accepts, then output (k′1, . . . , k

′
t/2) and halt.

Otherwise, repeat steps 1 – 4 for at most 4q ln 8q times. If none of the repetitions are
successful, output ⊥.

First, it is easy to verify that A′ runs in polynomial time. Next we argue that, conditioned on
not outputting ⊥, the algorithm A′ successfully inverts at least a γ′ fraction of G instances with
high probability.

Claim A.3. Let γ′ = γ+ξ/2. Consider the following probabilistic process. Sample keys k1, . . . , kt/2,
and generate (4q ln 8q) · (q + 1) copies of the corresponding states |ψki⟩. Run A′ on those copies,
and obtain either ⊥ or a tuple (k′1, . . . , k

′
t/2). The following hold, where the probabilities are over

the randomness of the aforementioned process.

1. P
[
Vert/2,γ

′t/2((k′1, . . . , k
′
t/2), |ψk1,...,kt/2⟩) accepts | A′ does not output ⊥

]
≥ 1− ξ/4.

2. P [A′ does not output ⊥] ≥ 1
8q .

Proof. This is essentially proved in [IK10, Lemma 5.6]; although they assumed that the Ver algo-
rithm is classical, it can be checked that the proof goes through essentially unchanged in our setting
where Ver is quantum and receives a quantum input.

Second stage. For the second stage we construct an algorithm B that tries to solve a single
instance of G by embedding it into the threshold repetition Gt,k. The algorithm B uses A′ as a
subroutine.
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Protocol A.4. The algorithm B to solve a single instance of G

Input: (128q ln 120
ξ ) · (4q ln 8q) · (q + 1) copies of |ψk⟩.

1. Sample a random index i∗ ∈ [t/2].

2. Sample random keys kj for j ∈ [t/2] \ {i∗} and generate (4q ln 8q) · (q+1) copies of the
corresponding states |ψkj ⟩.

3. Run the algorithm A′ on input (4q ln 8q) · (q + 1) copies of
(
(
⊗

j<i∗ |ψkj ⟩
)
⊗ |ψk⟩ ⊗(

(
⊗

j>i∗ |ψkj ⟩
)
.

4. If A′ outputs ⊥, then try steps 1 – 3 again for at most 128q ln 120
ξ times. If none of

the repetitions succeed, then output ⊥. Otherwise, if A′ outputs (k′1, . . . , k
′
t/2), then

output k′i∗ .

Again, it should be clear from construction that B runs in polynomial time. The following
argues that B successfully inverts the OWSG G, using a polynomial number of copies of the output
of G.

Claim A.5. Let s = (128q ln 120
ξ ) · (4q ln 8q) · (q + 1). Then

P

[
Ver(B(|ψk⟩⊗s), |ψk⟩) accepts :

k ← {0, 1}r(n)
|ψk⟩ ← Gen(k)

]
≥ γ + ξ/20 .

Proof. This is essentially proved in [IK10, Lemma 5.8]. Again, they prove their result for classical
algorithms, but the proof goes through in our quantum setting.

Putting everything together, we get that B inverts the OWSG G with probability at least
γ + ξ/20, which contradicts the security guarantee of G. Therefore the threshold repetition of Gt,k

has negligible security error.
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