Practice Worksheet 5

This practice worksheet is intended to act as a review sheet for the midterm as well as give some practice for the more recently covered material. The midterm and final exam will have questions inspired by the worksheets.

## Problem 1: Fourier Basis

Recall that the Fourier basis for  $\mathbb{C}^N$  is comprised of the following states: for all  $j = 0, 1, 2, \ldots N-1$ 1,

$$
|f_j\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp\left(\frac{2\pi i jk}{N}\right) |k\rangle.
$$

Remember, the phases  $\exp(2\pi i j k/N)$  are all on the unit circle in the complex plane:

$$
\exp\left(\frac{2\pi ijk}{N}\right) = \cos\left(\frac{2\pi jk}{N}\right) + i\sin\left(\frac{2\pi jk}{N}\right).
$$

- (a) Write out the Fourier basis states for dimensions  $N = 2, 3, 4$ , where the phases are simplified as much as possible (don't just write them in terms of exponentials).
- (b) Show that the Fourier basis states for  $N = 4$  are (a) unit vectors and (b) orthogonal to each other. In other words, these vectors really do form a basis.

## Problem 2: Fourier transform

Now recall the N-dimensional Fourier transform  $F_N$ , which is a unitary that maps the standard basis vector  $|j\rangle$  to the j'th Fourier basis vector  $|f_j\rangle$ .

In what follows we'll set  $N = 4$ . Here, the standard basis states are  $|0\rangle, |1\rangle, |2\rangle, |3\rangle$ .

- (a) Compute  $F_4$  applied to  $\frac{1}{\sqrt{2}}$ 4  $\Big(|0\rangle+|1\rangle+|2\rangle+|3\rangle\Big).$
- (b) Compute  $F_4^{\dagger}$  $\frac{1}{4}$  (the inverse of  $F_4$ ) applied to  $\frac{1}{\sqrt{2}}$ 4  $\Big(|0\rangle+|1\rangle+|2\rangle+|3\rangle\Big).$
- (c) Compute  $F_6$  applied to  $\frac{1}{\sqrt{2}}$ 2  $\Big(|0\rangle+|3\rangle\Big).$
- (d) Compute  $F_6$  applied to  $\frac{1}{\sqrt{2}}$ 3  $\Big(|0\rangle+|2\rangle+|4\rangle\Big).$
- (e) Do you notice an interesting pattern with the previous two answers?

## Problem 3: Fourier transform circuit

In class, we presented a recursive construction for  $F_N$  when N is a power of two (i.e.  $N = 2^n$ ), expressed in terms of smaller DFTs  $F_{N/2}$  and the "phase matrix"  $A_{N/2}$ .

Recall that  $A_{N/2}$  is a  $N/2 \times N/2$  matrix defined as follows:

$$
A_{N/2} = \begin{pmatrix} 1 & & & & \\ & \omega_N & & & \\ & & \omega_N^2 & & \\ & & & \ddots & \\ & & & & \omega_N^{N/2-1} \end{pmatrix}
$$

where  $\omega_N = \exp(2\pi i/N)$ .

- (a) Write out  $A_2$  in simplified terms (i.e., not in terms of exponentials). How many qubits does this matrix act on?
- (b) Write out  $A_4$  (it's okay to use exponentials). How many qubits does this matrix act on?

(c) Show that 
$$
A_4
$$
 is also equal to  $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ .

- (d) Draw the circuit for  $F_2$ .
- (e) Use the recursive construction from class lecture as a reference, draw the QFT circuit for  $F_4$ , using only two-qubit and single-qubit gates. In your gate set, you're allowed to use arbitrary single-qubit unitaries (not only  $H, X, Z$ , etc.).
- (f) Draw the QFT circuit for  $F_8$ .

## Problem 4: Phase estimation

- (a) What are eigenvector/eigenvalue pairs of the following unitary matrices? When writing the eigenvalue, write it in the form of  $e^{2\pi i\varphi}$  for some  $0 \leq \varphi < 1$ .
	- i. X

ii. 
$$
H
$$
  
iii.  $U = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ 

(b) For the unitary U above, one of the eigenvalues is  $-i$ . Let  $|\psi\rangle$  denote the corresponding eigenvector from the previous subproblem. Write out the intermediate states of each of the phase estimation circuit with  $t = 2$  ancilla qubits:

