COMS 4281 - Introduction to Quantum Computing Fall 2024

Practice Worksheet 4

This practice worksheet is intended to act as a review sheet for the midterm as well as give some
practice for the more recently covered material. The midterm and final exam will have questions
inspired by the worksheets.

Problem 1: Quantum Information

(a)

Consider the following two circuits. Assume all measurements take place in the standard
basis.
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What are the measurement probabilities if the first qubit is measured as the final operation
in the circuit? Find the post-measurement state after the second qubit is measured, and
then calculate the first qubit’s measurement probabilities.
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In the above circuit, the first qubit’s measurement occurs before the X gate and the second
qubit’s measurement, so logically the first measurement cannot depend on those operations
at all. Show that first qubit’s measurement statistics in this circuit are the same as before.

Alice has a quantum state [1). She measures |1) in the standard basis and gets |0). If she
immediately makes another measurement in the Hadamard basis, what are her measure-
ment probabilities? What if she first measured in the Hadamard basis, got |+), and then
measured in the standard basis? Relate these results to the Uncertainty Principle.

Problem 2: Basic Circuits

(a)

Draw a circuit that takes in three qubits in the |000) state and outputs the equal superpo-
sition given by
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(b) Draw a circuit that takes in three qubits in the |000) state and outputs the so-called GHZ

state given by
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(c) For the above two states, what are the measurement probabilities if measuring in the
standard basis? What about the Hadamard basis?
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Problem 3: Superdense. Supersecret.

In the superdense coding protocol (pictured below), Alice is trying to communicate two classical
bits to Bob. Alice and Bob each have half of a pre-shared engtangled pair, together in the state
(]00) + |11))/+/2. Alice applies one of four operations to her qubit (I, X, Z, X Z) depending on
the 2-bit string she wants to send, and then sends her half of the entangled pair to Bob. Bob
receives her qubit, applies a fixed circuit, and can recover the bits she sent.

In the below circuit depicting the superdense coding protocol, the first group of operations rep-
resents generating the pre-shared entangled pair. The second group represents Alice’s operations
on her qubit. Then she sends her half of the entangled pair (still entangled even after her op-
erations) to Bob, and the final group of operations represents his circuit to recover the classical
bits Alice sent.
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Now suppose an eavesdropper Eve intercepts Alice’s qubit on its way to Bob (when the pair of
qubits is collectively in state |¢)2)). What information can Eve recover about the bits bg, b1 ?

(a) To begin, show that Alice is sending one of the four Bell states |3(bg, b1)) defined as follows.
(Note that this is a slightly unconventional definition of the Bell states; usually the two
bits are swapped.)
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(b) Assume Eve may perform some unitary operation F on Alice’s qubit in state |3(bo, b1)), and
then will measure the qubit after her operation. Show that Eve’s measurement probabilities
are not dependent on bg, b;.
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(c) Having shown this, what can we state about the information Eve can extract from Alice’s
qubit?



Problem 4: Fourier Transform

(a) Write F, ;r (the complex conjugate of Fy given below)
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(b) Compute the (i,j)th entry for F,, where i,j € [0,n — 1].

Problem 5: Partial Measurements

Consider Alice and Bob’s entangled state:
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Suppose Alice measures her qubit using the Hadamard basis {|+),|—)}.

(a) What is the distribution of Alice’s measurement?

(b) What is Bob’s post-measurement state when he is measuring in the computational basis
conditioned on Alice getting outcome |4+)? When she gets outcome |—)?

Problem 6: The Deutsch Algorithm
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(a) Construct the unitary Uy that corresponds to the function f : {0,1} — {0,1} defined by
f0)y=1, f(1)=0.

(b) Calculate |¢)3) using the unitary you created. What are the measurement probabilities for
the first register?

(c) Redo the previous two steps using a new unitary U, that corresponds to the function
g:{0,1} — {0,1} defined by g(0) =0, g(1) = 1. What are the measurement probabilities
for the first register now?

Problem 7: Simon’s Algorithm



Consider the following circuit
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This is different from the one shown in class in that the measurement gate for the second qubit
register is delayed until after the time when the first qubit register is measured.

(a) Compute the final state |¢)3) and the measurement probabilities for the first (top) n-qubit
register. Does delaying when the measurement occurs affect the output of the circuit?

(b) What would the distribution of outcomes for the first qubit register be if the final n-qubit
Hadamard H®" were omitted as shown below?
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(c) Does Simon’s algorithm find the hidden secret with 100% probability? Why or why not?

(d) Consider the following classical algorithm for solving Simon’s problem: repeatedly generate
arandom n-bit string z;, query f to generate f(z;), and check if it’s the same as any previous
f(x;) where x; # x;. If it is, then z; @ x; = s. On average, how many queries to f would
we expect to issue before finding the secret s?



