Practice Worksheet 7

This worksheet covers topics from lectures on Nov 6, 11, and 13, including quantum complexity theory, spectral theorem, and Hamiltonians.

Problem 1: Quantum Complexity Theory

- (a) Briefly explain the key differences between the complexity classes BQP and P.
- (b) Is BPP \subseteq BQP? Explain why or why not, and if it is unknown, explain known evidence.
- (c) Is NP \subseteq BQP? Explain why or why not, and if it is unknown, explain known evidence. (Hint: black box separation.)
- (d) Explain why BQP \subseteq PSPACE. Explain why PSPACE \subseteq EXP.
- (e) Explain how a quantum computer can solve 3SAT with n variables in $O(\sqrt{2^n} \cdot \text{poly}(n))$ time. (Hint: Grover's search).

Problem 2: Grover amplification

Let $N = 2^n$. Let $f: \{0, 1\}^n \to \{0, 1\}$ be a function and let K denote the number of solutions x such that f(x) = 1. If K is known, then by running $O(\sqrt{N/K})$ Grover iterations one can obtain a solution with probability at least 1 - cK/N where c is a universal constant. However, if K is not known exactly, then by a more sophisticated algorithm (let's call it ObliviousGrover) one can still find a solution using $O(\sqrt{N/K})$ queries, but the probability of success is only guaranteed to be 99%.

For all ϵ , design an algorithm that calls ObliviousGrover as a subroutine and outputs a solution with probability $1 - \epsilon$. How many queries to f does your algorithm make, as a function of N, K, ϵ ?

Problem 3: Spectral Theorem

Recall that the spectral decomposition of a $d \times d$ Hermitian matrix A is given by

$$A = \sum_{j=1}^{d} \lambda_j \left| v_j \right\rangle \left\langle v_j \right|$$

where $\{|v_j\rangle\}_j$ are the orthonormal basis states and λ_j are the corresponding eigenvalues.

(a) Consider the Pauli matrix $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.

- i. Show that Y is Hermitian.
- ii. What are the eigenvalues of Y and the corresponding eigenvectors?
- iii. What is the spectral decomposition of Y?
- (b) Repeat parts (a)-(c) for the Hadamard matrix $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
- (c) Let $f(x) = e^{-ix}$. What is the spectral decomposition of f(Y)?

Problem 4: Hamiltonians

Recall that for a Hamiltonian H, which can be diagonalized as $H = \sum_j E_j |v_j\rangle \langle v_j|$ where each $|v_j\rangle$ is an eigenstate with energy E_j . For a state $|\psi\rangle$, the energy with respect to H is $\langle \psi | H | \psi \rangle$.

- (a) Consider the single-qubit Hamiltonian H = X + Y, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.
 - i. What are its eigenstates and corresponding energies?
 - ii. What is the energy of $|+\rangle$ with respect to this Hamiltonian?
 - iii. What is the energy of $|0\rangle$ with respect to this Hamiltonian?
- (b) Consider the two-qubit Hamiltonian $H = Z \otimes Z + X \otimes X$, where $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - i. What are its eigenstates and corresponding energies?
 - ii. What is the energy of $|+\rangle |0\rangle$ with respect to this Hamiltonian?
 - iii. What is the energy of $|00\rangle$ with respect to this Hamiltonian?