Fall 2024

Practice Worksheet 6

This practice worksheet is intended to act as a review sheet for the midterm as well as give some practice for the more recently covered material. The midterm and final exam will have questions inspired by the worksheets.

Problem 1: Basic Fourier math

Recall that the Fourier basis for \mathbb{C}^N is comprised of the following states: for all $j = 0, 1, 2, \ldots, N-1$,

$$|f_j\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{jk} |k\rangle$$

where

$$\omega_N = \exp\left(\frac{2\pi i}{N}\right)$$

is the N'th root of unity. It also can be written as

$$\omega_N = \cos\left(\frac{2\pi}{N}\right) + i\sin\left(\frac{2\pi}{N}\right) \,.$$

- (a) Write out $\omega_2, \omega_3, \omega_4, \omega_8$ in terms of algebraic numbers (e.g., numbers of the form $1, -1, i, 2+i, \sqrt{3}/2$, etc.).
- (b) What is $\omega_2^0 + \omega_2^1$? That is, ω_2^0 is ω_2 to the zeroth power, ω_2^1 is ω_2 to the first power, etc.
- (c) What is $\omega_3^0 + \omega_3^1 + \omega_3^2$?
- (d) What is $\omega_8^0 + \cdots + \omega_8^7$?
- (e) Let j be an integer that is not a multiple of N. Prove that

$$\left(1-\omega_N^j\right)\sum_{k=0}^{N-1}\omega_N^{jk}=0\;.$$

(f) Use this to conclude that

$$\sum_{k=0}^{N-1} \omega_N^{jk} = \begin{cases} 0 & \text{if } j \text{ is not a multiple of } N \\ N & \text{if } j \text{ is a multiple of } N \end{cases}$$

(g) Show that the Fourier basis vectors $\{|f_0\rangle, \ldots, |f_{N-1}\rangle\}$ forms an orthonormal basis.

Problem 2: Order Finding algorithm

Recall that the Order Finding problem is as follows: given two nonnegative integers (x, N) where $0 \le x < N$ and gcd(x, N) = 1 (meaning that the only thing that divides both x and N is 1), find the smallest integer r such that $x^r = 1 \mod N$.

- (a) What is the order r of x = 7, when taken modulo N = 15?
- (b) What is the order r of x = 3, when taken modulo N = 11?

Recall the unitary matrix acting on \mathbb{C}^N such that

$$U_x |y\rangle = |xy \mod N\rangle$$

Here we use the standard basis of \mathbb{C}^N which is $\{|0\rangle, |1\rangle, \dots, |N-1\rangle\}$. Let x = 3, N = 11, y = 4.

- (c) Compute $U_x^k | y \rangle$ for k = 0, 1, 2, ..., 10.
- (d) For these choices of x, N, y, write out a formula for $U_x^k |y\rangle$ for general k.

Problem 3: Outer products

We will get some practice with outer products. For the following, write the matrix form of the given expression, and identify the well-known name for that matrix.

- (a) $|1\rangle \langle 0| + |0\rangle \langle 1|$
- (b) $\sqrt{2} \left(|+\rangle \langle -| + |0\rangle \langle 1| \right)$
- (c) $|0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes X$.
- (d) Let U be an arbitrary single-qubit gate. Describe the high-level functionality of the matrix

 $|0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes U$

as a quantum gate. We often call this gate the "controlled-U" gate, or abbreviated by cU.

- (e) $\sum_{x \in \{0,1\}^n} |x\rangle \langle x|$. Note that this is a matrix acting on *n* qubits.
- (f) $\sum_{0 \le j,k < N} \exp\left(-\frac{2\pi i j k}{N}\right) |j\rangle\langle k|$. Note that this matrix acts on \mathbb{C}^N .

Problem 4: Grover search

- (a) Show that the Grover diffusion operator $R = 2 |+\rangle \langle +|^{\otimes n} I$ is a unitary matrix.
- (b) Show that $R = H^{\otimes n} \left(2 |0\rangle \langle 0|^{\otimes n} I \right) H^{\otimes n}$, where $|0\rangle \langle 0|^{\otimes n}$ is the outer product of $|0\rangle^{\otimes n}$ with itself.
- (c) Show that the unitary operator $2|0\rangle\langle 0|^{\otimes n} I$ is the same as O_h , the phase oracle corresponding to the boolean function $h: \{0,1\}^n \to \{0,1\}$ where

$$h(x) = \begin{cases} 0 & \text{if } x = 0 \cdots 0\\ 1 & \text{otherwise} \end{cases}$$

(d) Suppose $f : \{0,1\}^n \to \{0,1\}$ has M solutions x such that f(x) = 1. Suppose we run Grover's algorithm with k iterations, and then measure the state of the algorithm. What is the probability that a solution is produced as an outcome (as a function of n, M, k)?