
COMS 4281 - Intro to Quantum Computing

Problem Set 1, Quantum Info Basics

Due: October 6, 11:59pm

Collaboration is allowed and encouraged (teams of at most 3). Please read the syllabus carefully for the guidlines regarding

collaboration. In particular, everyone must write their own solutions in their own words.

Write your collaborators here:

Recommended Environment to Run This Notebook

We highly recommend that you use the qBraid platform to run this Jupyter notebook. This supports Qiskit, and furthermore to

render your Problem Set solutions to PDF, you have to do the following:

1. File > Save and Export Notebook As > HTML

2. Save the HTML file somewhere on your local computer

3. Open the HTML file using your favorite browser, and Print to PDF. We recommend using Landscape mode so the Python

code shows up better.

Click here to collapse these cells after running the first two

These commands will install qiskit and the qiskit simulator on the Jupyter environment (we recommend qBraid). It may take a

few minutes.

!pip install qiskit > /dev/null
!pip install qiskit_aer > /dev/null
!pip install qiskit_ibm_runtime > /dev/null

In []:

http://www.qbraid.com/

The following code are helper routines that will be used throughout this problem set. After running it, you can click the cell

called "Click here to collapse..." to hide this.

from qiskit import *
import qiskit
from qiskit.visualization import plot_state_city
from qiskit.compiler import transpile
from qiskit.visualization import plot_histogram
from qiskit.quantum_info.operators import Operator
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import UnitaryGate
from qiskit_aer import AerSimulator
from qiskit_ibm_runtime import SamplerV2
backend = AerSimulator()
sampler = SamplerV2(mode=backend)

import numpy as np
from typing import Callable, List, Tuple
import math
from functools import *
import copy

QuantumClassicalOperator = Callable[[QuantumRegister, ClassicalRegister], QuantumCircuit]
QuantumOperator = Callable[[QuantumRegister], QuantumCircuit]
def append(global_circuit: QuantumCircuit,
 operator: QuantumClassicalOperator,
 quantum_register: List[int],
 classical_register: List[int]) -> QuantumCircuit:
 delegated_qregister = QuantumRegister(len(quantum_register), "quantum_register")
 delegated_cregister = ClassicalRegister(len(classical_register), "classical_register")
 delegated_operation_circuit = operator(delegated_qregister, delegated_cregister)
 global_circuit.append(delegated_operation_circuit,
 qargs = [global_circuit.qubits[reg] for reg in quantum_register],
 cargs = [global_circuit.clbits[reg] for reg in classical_register])
 return global_circuit.decompose(delegated_operation_circuit.name)

def append(global_circuit: QuantumCircuit,
 operator: QuantumOperator,
 quantum_register: List[int]) -> QuantumCircuit:
 delegated_qregister = QuantumRegister(len(quantum_register), "quantum_register")
 delegated_operation_circuit = operator(delegated_qregister)

In []:

 global_circuit.append(delegated_operation_circuit,
 qargs = [global_circuit.qubits[reg] for reg in quantum_register],
 cargs = [])
 return global_circuit.decompose(delegated_operation_circuit.name)

def append2(global_circuit: QuantumCircuit,
 operator: QuantumClassicalOperator,
 quantum_register: List[int],
 classical_register: List[int]) -> QuantumCircuit:
 delegated_qregister = QuantumRegister(len(quantum_register), "quantum_register")
 delegated_cregister = ClassicalRegister(len(classical_register), "classical_register")
 delegated_operation_circuit = operator(delegated_qregister, delegated_cregister)
 global_circuit.append(delegated_operation_circuit,
 qargs = [global_circuit.qubits[reg] for reg in quantum_register],
 cargs = [global_circuit.clbits[reg] for reg in classical_register])
 return global_circuit.decompose(delegated_operation_circuit.name)

def get_basis(n_qubit: int) -> List[str]:
 basis = []
 def helper(n: int, arr: List[int], i: int) -> None:
 if i == n:
 basis.append(''.join(arr))
 return
 arr[i] = '0'
 helper(n, arr, i + 1)
 arr[i] = '1'
 helper(n, arr, i + 1)
 helper(n_qubit, ['0']*n_qubit, 0)
 return basis

def apply_oracle_gate(type: str, input: str) -> str:
 a, b, c = input
 a, b, c = int(a), int(b), int(c)
 assert type in ['OR', 'XOR', 'AND']
 if type == 'OR': c = c ^ (a | b)
 elif type == 'XOR': c = c ^ (a ^ b)
 elif type == 'AND': c = c ^ (a & b)
 return f'{a}{b}{c}'

def test_gates(gate_operators: List[QuantumOperator]) -> None:

 print("Testing gates...")
 basis = get_basis(3)
 gate_types = ['OR', 'XOR', 'AND']
 qr = QuantumRegister(3, name="input")
 qc = QuantumCircuit(qr)
 for gate_type, gate_operator in zip(gate_types, gate_operators):
 correct = True
 for base in basis:
 oracle_output = apply_oracle_gate(type=gate_type, input=base)
 gate = gate_operator(qr)
 qc0 = copy.deepcopy(qc)
 for i, bit in enumerate(base):
 if bit == '1': qc0.x(i)
 qc0.compose(gate, qubits=[0,1,2], inplace=True)
 state = Statevector(qc0)
 for amp, base0 in zip(state, basis):
 if base0[::-1] == oracle_output: correct = correct and amp==1
 else: correct = correct and amp==0
 msg = 'OK' if correct else 'Error'
 print(f'{gate_type} gate: {msg}.')

def apply_oracle_adder(a: str, b: str) -> str:
 # a, b in little-endian
 # return c in little-endian
 c = int(a[::-1],2) + int(b[::-1], 2)
 return f'{c:03b}'[::-1]

def test_two_bit_adder(adder: QuantumCircuit, num_anc: int, has_scratch: bool) -> None:
 if has_scratch:
 print("Testing two-bit adder with scratch...")
 else:
 print("Testing two-bit adder without scratch...")
 basis = get_basis(2)
 qr = QuantumRegister(7+num_anc, name="input")
 cr = ClassicalRegister(7+num_anc, name="measurement_outcomes")
 qc = QuantumCircuit(qr, cr)
 error = False
 for a in basis:
 for b in basis:
 c = apply_oracle_adder(a, b)
 qc0 = copy.deepcopy(qc)
 for i, bit in zip(range(0,2), a):

 if bit == '1': qc0.x(i)
 for i, bit in zip(range(2,4), b):
 if bit == '1': qc0.x(i)
 qc0.compose(adder, qubits=[i for i in range(7+num_anc)], inplace=True)
 qc0.measure([i for i in range(7+num_anc)], cr)
 job_sim = sampler.run([transpile(qc0, backend)], shots = 1000)
 result_sim = job_sim.result()[0]

 measurements = list(result_sim.data.measurement_outcomes.get_counts().keys())
 if len(measurements)!=1:
 print(f'Error: Obtained non-deterministic result for A = {a}, B = {b}.')
 continue
 output = measurements[0][::-1]
 oa, ob, oc, od = output[0:2], output[2:4], output[4:7], output[7:]
 # Note that oa, ob, oc are all expressed as little-endian now
 has_error = True
 if oc!=c:
 print(f'Error (incorrect): A = {a}, B = {b}, expected C = {c}; got {oc}.')
 elif oa != a or ob !=b:
 print(f'Error (A or B modified): A = {a} -> {oa}, B = {b} -> {ob}.')
 elif not has_scratch and od != '0' * num_anc:
 print(f'Error (has scratch): D = {od}.')
 else: has_error = False
 error = has_error or error
 if not error: print('OK.')

def test_noisy_teleportation(noisy_tp_circuit: QuantumCircuit) -> None:
 print("Testing noisy teleportation...")
 qr1 = QuantumRegister(1, name="psi")
 qr2 = QuantumRegister(2, name="theta")
 cr = ClassicalRegister(3, name="m")
 qc0 = QuantumCircuit(qr1, qr2, cr)

 for i in range(4):
 qc = copy.deepcopy(qc0)
 if i==1:
 qc.x(0)
 elif i==2:
 qc.h(0)

 elif i==3:
 qc.x(0)
 qc.h(0)

 qc.compose(copy.deepcopy(noisy_tp_circuit), qubits=[0,1,2], inplace=True)

 if i==1:
 qc.x(2)
 elif i==2:
 qc.h(2)
 elif i==3:
 qc.h(2)
 qc.x(2)

 qc.measure(qr2[1], cr[2])
 job_sim = sampler.run([transpile(qc, backend)], shots = 1000)
 result_sim = job_sim.result()[0]
 measurements = result_sim.data.m.get_counts()
 for state in measurements.keys():
 if state[0] != '0':
 print('Error.')
 return
 print('OK.')

Problem 1: Implement a Quantum Circuit

In this problem, you will implement a simple quantum circuit that constructs the from the all zeroes

state. In other words, you will find a circuit such that

In this problem, you will use the Qiskit library to implement, visualize, and analyze the circuit .

a). Design a circuit to prepare the state , and write the corresponding Qiskit code between the "BEGIN CODE" and "END

CODE" delineations below. You may use any of the gates we have learned in class. We've already created the circuit object,

you just need to specify what gates to add.

|ψ⟩ = (|000⟩ − |111⟩)1
√2

C

C |000⟩ = |ψ⟩

C

C |ψ⟩

def create_sym_state_circuit() -> QuantumCircuit:
 qr = QuantumRegister(3, name='x')
 qc = QuantumCircuit(qr)

 # ========= BEGIN CODE =================

 # ========= END CODE =================

 return qc

qc = create_sym_state_circuit()
qc.draw()

We can furthermore print out the output state of the circuit you just created:

ghz_circuit = create_sym_state_circuit()
final_state = Statevector(ghz_circuit)
final_state.draw(output='latex')

b) Update your circuit to measure in the standard basis, and visualize the measurement statistics of 1000 shots using a

histogram. We have provided an sampler object (of Type SamplerV2) to help you simulate the circuit.

here's an example of running the circuit using the sampler object
replace YOUR_CIRCUIT_OBJECT with the variable corresponding to your quantum circuit
#job_sim = sampler.run([transpile(YOUR_CIRCUIT_OBJECT, backend)], shots=1000)
#result_sim = job_sim.result()[0]
#counts = result_sim.data.output.get_counts()
#plot_histogram(counts)

========= BEGIN CODE =================

========= END CODE =================

c) Consider running the following circuit with as input. Let denote the output state. Calculate the state by

computing the intermediate states of the circuit, and write it out below in below where it says Solution.

In []:

In []:

|ψ⟩

In []:

|ψ⟩ |θ⟩ |θ⟩
LT XA E

Solution

d) Write code to implement a circuit that prepares the state , measure it in the standard basis and visualize the

measurement statistics of 1000 shots using a histogram.

========= BEGIN CODE =================

========= END CODE =================

Problem 2: A Quantum Two-bit Adder
The classical two-bit adder is an irreversible function that takes in four bits, and , and outputs three bits

 which is the binary representation of the sum of and (i.e., integers that and

 represent in binary). For example, on input and the two bit adder should return . On input

and it should output .

You can find a circuit for an irreversible circuit for the two-bit adder here, consisting of XOR, OR, and AND gates (see

Wikipedia for gate symbol reference).

In this problem you will implement a reversible two-bit adder in Qiskit.

a) First, let's implement reversible versions of the XOR, OR, and AND gates. Recall that every boolean function can be

converted to a reversible transformation using an additional ancilla bit. Since XOR, OR, AND map 2 bits to 1 bit, the

|θ⟩

In []:

(A0,A1) (B0,B1)
(C0,Q0,Q1) 2A1 + A0 2B1 + B0 (A0,A1)
(B0,B1) (0, 1) (1, 1) (1, 0, 1) (1, 1)

(1, 1) (0, 1, 1)

f

Tf

https://img.f-alpha.net/electronics/digital_electronics/adder/circuit_diagram_2_bit_adder.gif
https://en.wikipedia.org/wiki/Logic_gate

reversible functions will map 3 bits to 3 bits. The corresponding matrices are . Specifically, we want

In the functions below, enter the matrix representations of below (replace the entries with the appropriate

values). Be cognizant of the row/column ordering convention!

Your implementations of reversible XOR, OR, and AND will be tested.

def create_Tor(qr: QuantumRegister) -> QuantumCircuit:
 assert len(qr) == 3, 'Tor gate should operate on 3 qubits.'
 qc = QuantumCircuit(qr)
 ##### FILL IN THE MATRIX BELOW FOR THE REVERSIBLE OR GATE ##########
 Tor = Operator([
 [1, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 1],
])
 ##
 qc.unitary(Tor, [2, 1, 0], label='Tor')
 return qc

def create_Txor(qr: QuantumRegister) -> QuantumCircuit:
 assert len(qr) == 3, 'Txor gate should operate on 3 qubits.'
 qc = QuantumCircuit(qr)
 ##### FILL IN THE MATRIX BELOW FOR THE REVERSIBLE XOR GATE ##########
 Txor = Operator([
 [1, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 1],
])

TXOR,TOR,TAND 8 × 8

Tf |a, b, c⟩ = |a, b, f(a, b) ⊕ c⟩

TXOR,TOR,TAND

In []:

 ##
 qc.unitary(Txor, [2, 1, 0], label='Txor')
 return qc

def create_Tand(qr: QuantumRegister) -> QuantumCircuit:
 assert len(qr) == 3, 'Tand gate should operate on 3 qubits.'
 qc = QuantumCircuit(qr)
 ##### FILL IN THE MATRIX BELOW FOR THE REVERSIBLE AND GATE ##########
 Tand = Operator([
 [1, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 1],
])
 ##
 qc.unitary(Tand, [2, 1, 0], label='Tand')
 return qc

#Running test cases on your adder....
test_gates([create_Tor,create_Txor,create_Tand])

b) You can now put together reversible circuits consisting of , , and by using the functions create_Tor ,
create_Txor , and create_Tand , and also a helper function called append that allows you to append a gate to a

circuit . The function takes in a circuit , a function constructs the gate , and a list of bits that operates on. See the

code below as an example.

EXAMPLE ONLY
qx = QuantumRegister(2, name="x")
qa = QuantumRegister(2, name="a")
qc = QuantumCircuit(qx,qa) #add the X register and A registers
qc = append(qc, create_Tand, [0, 1, 2]) #reversible AND acting on (x0,x1) and ancilla a0
qc = append(qc, create_Txor, [0,1,3]) #reversible XOR acting on (x0,x1) and ancilla a1
qc.draw()

In []:

TXOR TOR TAND

G

C C g G G

In []:

Now, transform the irreversible circuit for the two-bit adder above to a reversible circuit for the two-bit adder. More

precisely, the circuit should act on bits

 representing the first number

 representing the second number

 representing the binary representation of

Some number of ancilla bits

The circuit should have the behavior: for all inputs ,

where are two bits and is represented by three bits. corresponds to the bits of the ancilla that depends on

the inputs . This data corresponds to the "scratch work" of the computation. We will assume all ancillas are initiated to

.

Your circuit can use , as well as , , and gates. Choose the appropriate number of ancillas,

and then implement your circuit where indicated. The code afterwards will visualize your circuit as well run it on several test

cases.

Todo: fill in the number of ancillary qubits for your circuit
num_anc = 1

def create_two_bit_adder_with_scratch(num_anc) -> QuantumCircuit:
 A = QuantumRegister(2, name="a")
 B = QuantumRegister(2, name="b")
 C = QuantumRegister(3, name="c")
 D = QuantumRegister(num_anc, name="d")
 qc = QuantumCircuit(A,B,C,D)

 #### BEGIN YOUR CODE HERE ############################

 ##### END YOUR CODE HERE ###############################

C

C

(A0,A1) A = 2A1 + A0

(B0,B1) B = 2B1 + B0

(C0,C1,C2) A + B

(D0,D1, …)

C A0,A1,B0,B1 ∈ {0, 1}

C |A,B, 0, 0 ⋯ 0⟩ =

∣
∣
∣
∣
∣

A
2 bits

, B
2 bits

,A + B
3 bits

, SA,B
ancillas

⟩

A,B A + B SA,B

A,B
|0⟩

C TXOR,TAND,TOR CNOT X Z H

In []:

 return qc

two_bit_adder_with_scratch = create_two_bit_adder_with_scratch(num_anc=num_anc)
two_bit_adder_with_scratch.draw()

Running test cases on your adder....
test_two_bit_adder(two_bit_adder_with_scratch, num_anc, has_scratch=True)

c) Now we go one step further to implement a reversible two-bit adder that does the same thing as above except the scratch

bits start and end in the zero state.

In other words, the scratch work is erased.

def create_two_bit_adder() -> QuantumCircuit:
 A = QuantumRegister(2, name="a")
 B = QuantumRegister(2, name="b")
 C = QuantumRegister(3, name="c")
 D = QuantumRegister(num_anc, name="d")
 qc = QuantumCircuit(A,B,C,D)

 #### BEGIN YOUR CODE HERE ############################

 ##### END YOUR CODE HERE ###############################

 return qc

two_bit_adder = create_two_bit_adder()
two_bit_adder.draw()

#Running test cases on your adder....
test_two_bit_adder(two_bit_adder, num_anc, has_scratch=False)

Problem 3: Non-standard Basis Measurements

In []:

C |A,B, 0, 0 ⋯ 0⟩ = |A,B,A + B, 0 ⋯ 0⟩

In []:

In []:

a) Consider an orthonormal basis for . As we learned in class, measuring a quantum state

according to the basis yields outcome with probability .

In class we also learned that this process was equivalent to first applying a unitary on , and then measuring the resulting

state in the standard basis. In other words, the probability of obtaining standard basis outcome when measuring in

the standard basis, equal to . What unitary accomplishes this? Given an algebraic expression for , such as a sum

of outer products, or a description of the rows/columns of , etc. Then prove that it works.

Your Solution:

write your solution here, using LaTeX and Markdown

b) Now let's implement the unitary for measuring in the following basis :

and

First, write down the measurement probabilities if we measure the following states in the basis :

c) In the code below, write the matrix that implements the change of basis from the standard basis to the basis above.

========= BEGIN CODE =================

U = [[1, 0], [0, 1]] # <-- edit this matrix!

========= END CODE =================

def perform_basis_measurement(initial_state: List[float]) -> QuantumCircuit:
 qr = QuantumRegister(1, name="input_state")
 cr = ClassicalRegister(1, name="output")
 qc = QuantumCircuit(qr, cr)
 qc.initialize(initial_state)

B = {|b1⟩ , … , |bd⟩} Cd |ψ⟩ ∈ Cd

B ∣∣bj⟩ |⟨bj|ψ⟩|2

U |ψ⟩
|j⟩ U |ψ⟩

|⟨bj|ψ⟩|2 U U

U

B

|ψ0⟩ = cos(π/8) |0⟩ + sin(π/8) |1⟩

|ψ1⟩ = − sin(π/8) |0⟩ + cos(π/8) |1⟩

B

|1⟩ , |−⟩ , |+⟩ , cos(π/8) |0⟩ + sin(π/8) |1⟩

U

In []:

 qc.append(UnitaryGate(U), qr)
 qc.measure(qr, cr)
 return qc

Now we'll test your basis change on some states and plot their measurement statistics. You should use this to check whether

you implemented the right basis change .

#First, we test it on the |1> state
qc1 = perform_basis_measurement([0.0, 1.0])
qc1.draw()

job_sim = sampler.run([transpile(qc1, backend)], shots=5024)
Grab the results from the job.
result_sim = job_sim.result()[0]
counts = result_sim.data.output.get_counts()

plot_histogram(counts)

#...and the |+> state
qc1 = perform_basis_measurement([1.0/np.sqrt(2), 1.0/np.sqrt(2)])
qc1.draw()

job_sim = sampler.run([transpile(qc1, backend)], shots=5024)
Grab the results from the job.
result_sim = job_sim.result()[0]
counts = result_sim.data.output.get_counts()

plot_histogram(counts)

Next we try it on the |-> state
qc1 = perform_basis_measurement([1.0/np.sqrt(2), -1.0/np.sqrt(2)])
qc1.draw()

job_sim = sampler.run([transpile(qc1, backend)], shots=5024)
Grab the results from the job.
result_sim = job_sim.result()[0]
counts = result_sim.data.output.get_counts()

plot_histogram(counts)

U

In []:

In []:

In []:

#and now the cos(pi/8) |0> + sin(pi/8) |1> state
qc1 = perform_basis_measurement([np.cos(math.pi/8), np.sin(math.pi/8)])
qc1.draw()

job_sim = sampler.run([transpile(qc1, backend)], shots=5024)
Grab the results from the job.
result_sim = job_sim.result()[0]
counts = result_sim.data.output.get_counts()

plot_histogram(counts)

Problem 4: EPR Pair Properties

Let's examine properties of the EPR pair

In what follows, let's suppose that Alice is given the left qubit of the EPR pair, and Bob is given the right qubit, and they are

separated by a large distance.

a) Let be some orthonormal basis for . Suppose Alice measures her qubit using basis . What are the

statistics of the measurement outcomes (i.e. what are the probability of or)?

Your Solution:

write your solution here, using LaTeX and Markdown

b) Show that if Alice obtains measurement outcome for some , the post-measurement state of the EPR pair is

 where is the complex conjugate of (i.e. the -th entry is the complex conjugate of the -th entry of

).

This is interesting because Alice might have decided on the basis only after Bob was sent away, yet Alice's measurement

causes Bob's qubit to instantaneously collapse into one of the basis states of (up to complex conjugation). This is a

In []:

|ψ⟩ = (|00⟩ + |11⟩) .
1

√2

A = {|a1⟩, |a2⟩} C2
A

|a1⟩ |a2⟩

|ai⟩ i ∈ {1, 2}
|ai⟩ ⊗ |ai⟩∗ |ai⟩∗ |ai⟩ j j |ai⟩

A

phenomenon called quantum steering, because Alice is able to steer Bob's qubit, even though she is only acting on her

qubit.c) In the code below, write the matrix that implements the change of basis from the standard basis to the basis

above.

Your Solution:

write your solution here, using LaTeX and Markdown

c) Suppose that Bob then measures his qubit using an orthonormal basis . What are the statistics of his

measurement outcomes, conditioned on Alice's outcome?

Your Solution:

write your solution here, using LaTeX and Markdown

d) Suppose the order of measurements were reversed: Bob measures his qubit first using basis , and then Alice measures

her qubit using basis . Show that the joint probability distribution of their measurement outcomes is the same as before.

Your Solution:

write your solution here, using LaTeX and Markdown

e) What can you conclude about the effectiveness of using quantum entanglement and quantum steering as a method for

faster-than-light communication? In other words, can Alice and Bob, by only making local measurements on their entangled

state, send information to each other?

Your Solution:

write your solution here, using LaTeX and Markdown

Problem 5: Quantum Teleportation with Noise

U

B = {|b1⟩, |b2⟩}

B

A

We saw how to teleport quantum states in class. Let's consider a twist on the standard teleportation protocol. Let's imagine

that when Alice and Bob meet up to create an entangled state, the settings on their lab equipment was screwed up and they

accidentally create the following two-qubit entangled state

Only Alice realizes this after they haven each taken a qubit each and gone their separate ways.

Suppose that Alice now gets a gift qubit . Is there a way that she can still teleport to Bob, using their

corrupted entangled state and the classical communication channel? Like in the standard teleportation protocol, Alice can

only apply unitaries and measurements to her two qubits, and Bob will apply the same corrections as in the standard

teleportation protocal (since he's not aware of the corruption).

a) Show how the teleportation protocol can be adapted for the corruption from Alice's side and analyze the correctness of

your proposed protocol.

Your Solution:

write your solution here, using LaTeX and Markdown

b) Now let's implement Alice's teleportation protocol using the noisy EPR pair with qiskit.

Write code in create_alice_noisy_tp_circuit function below, which takes as as input a QuantumRegister (consisting

of two qubits) and a ClassicalRegister (consisting of two 2 bits).

Important Note: the register indices in Alice's and Bob's functions are local (0-indexed), meaning that from Alice or Bob's

point of view, her zeroth qubit is the gift qubit, and her first qubit is the first half of the EPR pair. From Bob's point of view, he

only has the other half of the EPR pair, which he considers his zeroth qubit.

def initialize_noisy_epr_pair(qc: QuantumCircuit, qubits: List[int]) -> QuantumCircuit:
 # For qc.initialize, the ordering of the states are |00>, |01>, |10>, |11>
 #if the top wire corresponds to the rightmost bit (recall the little endian convention of Qiskit)
 qc.initialize([np.sqrt(1/3.0), np.sqrt(1/6.0), -np.sqrt(1/6.0), np.sqrt(1/3.0)], qubits = qubits)
 qc.barrier()
 return qc

|θ⟩ = |00⟩ − |01⟩ + |10⟩ + |11⟩ .
1

√3

1

√6

1

√6

1

√3

|ψ⟩ = α |0⟩ + β |1⟩ |ψ⟩
|θ⟩

In []:

def create_base_noisy_tp_circuit() -> QuantumCircuit:
 qr1 = QuantumRegister(1, name="psi")
 qr2 = QuantumRegister(2, name="theta")
 cr = ClassicalRegister(2, name="m")
 qc = QuantumCircuit(qr1, qr2, cr)
 return initialize_noisy_epr_pair(qc, [1, 2])

def create_alice_noisy_tp_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit:
 qc = QuantumCircuit(qr, cr)
 # Alice has two qubits (index 0,1) and access to two classical registers (index 0,1)
 # ========= BEGIN CODE =================

 # ========= END CODE =================
 return qc

def create_bob_noisy_tp_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit:
 qc = QuantumCircuit(qr, cr)
 qc.z(0).c_if(cr[0], 1) # Apply gates if the registers
 qc.x(0).c_if(cr[1], 1) # are in the state '1'
 return qc

noisy_tp_circuit = create_base_noisy_tp_circuit()
noisy_tp_circuit = append2(noisy_tp_circuit, create_alice_noisy_tp_circuit, [0,1], [0,1])
noisy_tp_circuit = append2(noisy_tp_circuit, create_bob_noisy_tp_circuit, [2], [0,1])
noisy_tp_circuit.draw()

test_noisy_teleportation(noisy_tp_circuit)

In []:

In []:

