
Week 5: Holveo’s theorem and Introduction

to Quantum Computation

COMS 4281 (Fall 2024)



Admin

1. Pset1 due Sunday, October 6, 11:59pm.

2. No practice worksheet/quiz this week.
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Last time: the strangeness and power of entanglement

• Partial measurements, non-standard measurements on

entangled states

• Heisenberg Uncertainty

• Quantum teleportation

• EPR Paradox and Bell’s theorem
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How much information do qubits

store?



An n-qubit state |ψ⟩ on the surface looks like it contains

exponential amounts of information, because it is represented by a

vector of dimension 2n.

In quantum computing/quantum mechanics, we want to harness

this to our advantage.

But as mentioned before, there’s a tension between the

exponentiality of quantum states, and the fact that this is hidden

behind a veil of measurement.
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Holevo’s Theorem

If we have n qubits, how much classical information can we store?

Can we use n qubits as a “quantum hard drive” to store many

more than n classical bits?

No! Holevo’s theorem states that, for the purposes of information

storage, quantum bits are not much better than classical bits!
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Holevo’s Theorem

Alice has an m-bit string X that she wants to transmit to Bob.

She wants to encode X into some n-qubit quantum state |ψX ⟩
such that Bob can perform some computation (unitaries +

measurement) to try to decode X .

Bob only gets X with high probability if the number of qubits n is

at least m.
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Holevo’s Theorem

Pictorially:
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Superdense coding

Using preshared entanglement, Alice can save on the number of

qubits she sends to convey X . This is achieved by a protocol

known as superdense coding.

This allows Alice to convey m classical bits, while sending only

n = m/2 qubits to Bob, provided they use preshared

entanglement.
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A simple equation describing superdense coding:

1ebit + 1qbit = 2cbits.

On the other hand, teleportation can be thought of as:

1ebit + 2cbits = 1qbit.
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The protocol for superdense coding is very similar to teleportation.

An EPR pair is shared (prepared by Charlie) is shared by Alice and

Bob. Alice gets two bits (b1, b2), which determines which

operations she applies to her qubit.
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Quantum Computation



What is quantum computation?

It’s whatever you can do with a quantum circuit, where (typically):

1. The input qubits start in the |0⟩ state.
2. A sequence of single and two-qubit gates drawn from a Gate

Set

3. Measurements (usually at the end)
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Gate sets

What single- and two qubit gates are allowed in a quantum circuit?

It depends on the hardware!

A gate set G is called universal if, for any unitary U (which may

act on many qubits), one can construct a circuit using gates from

G to approximate U.
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Notion of approximation

Definition: We say that unitary U ϵ-approximates V if for all

quantum states |ψ⟩,

∥∥∥U |ψ⟩ − V |ψ⟩
∥∥∥ ≤ ϵ.

A circuit C without measurements corresponds to some unitary, so

it is meaningful to say that a circuit C approximates a unitary

matrix.
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Universal gate sets

A continuous universal gate set: Rotations

RX (θ) =

(
cos θ −i sin θ

−i sin θ cos θ

)
RY (θ) =

(
cos θ − sin θ

sin θ cos θ

)

RZ (θ) =

(
e−iθ 0

0 e iθ

)
over all 0 ≤ θ ≤ 2π plus Phase shift

P(φ) =

(
1 0

0 e iφ

)

over all 0 ≤ φ ≤ 2π plus CNOT
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Universal gate sets

A discrete, finite universal gate set:

H =
1√
2

(
1 1

1 −1

)
S =

(
1 0

0 i

)
CNOT

and

T =

(
1 0

0 e iπ/4

)
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Universal gate sets

Using a universal gate set G means, in principle we don’t have to

worry about what gates are used by a given quantum circuit C .

That’s because there is a way to compile the circuit C into another

circuit C ′ that uses only gates from G, and C approximates C ′.

Ideally, we’d like the compiled circuit C ′ to be not much bigger

than C .
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Solovay-Kitaev Theorem

Let Γ ⊆ SU(2) (i.e. the set of single-qubit unitaries up to a global

phase). Suppose

1. Γ generates a dense subgroup of SU(2).

2. Γ is closed under inverse.

Then for all ϵ > 0 any unitary U ∈ SU(2) can be ϵ-approximated

by a product of at most O(log(1ϵ )) gates from Γ.
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Universal gate sets

Corollary: Let Γ ⊆ SU(2) denote a set of single qubit unitaries

satisfying conditions of Solovay-Kitaev theorem (an example is the

set {H,T}). Then for all n, for all circuits C (allowed to use any

single and two-qubit gates), for all ϵ > 0

There exists a circuit C ′ consisting of gates from Γ ∪ {CNOT}
only that

1. ϵ-approximates C

2. number of gates in C ′ is at most number of gates in C times

O(log(1/ϵ)).
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Quantum circuit synthesis

In quantum computing, we often want to come up with a quantum

circuit C to (approximately) implement some unitary U. Hopefully,

the circuit C is not too large! This is called quantum circuit

synthesis.

How many single- and two-qubit gates are needed to build a circuit

C that approximates a given unitary U?

In general, at least 4n!
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Our first quantum algorithm



Deutsch’s problem

Given oracle access to a boolean function f : {0, 1} → {0, 1},
decide whether f (0) = f (1) or f (0) ̸= f (1).

Oracle access to a function f means that the computer can only

access it as a black-box, i.e., query some inputs, and get the

corresponding outputs. The computer cannot access how the black

box is implemented.

Claim: Any classical algorithm that solves the Deutsch problem

must make 2 queries to f .
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Quantum oracles

Quantum algorithms can access a black-box function f through a

unitary Uf corresponding to the reversible version of f . For

f : {0, 1} → {0, 1}, this is a two-qubit unitary

Uf |x , b⟩ = |x , b ⊕ f (x)⟩ .

A quantum circuit that wants to access f will simply call Uf just

like any other two-qubit gate.
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Deutsch’s algorithm

|0⟩ H
Uf

H

|1⟩ H

This quantum algorithm solves the Deutsch problem with one call

to Uf .

Let’s do this on the board!
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Deutsch’s algorithm

The algorithm evaluates the function f in superposition. This

seems to give a 2x speedup!

Is this cheating? Maybe the ”quantum access” is just really

making multiple classical queries under the hood?
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Observation: the qubit storing the answer at the end corresponds

to the input wire of the oracle Uf . We don’t care about the output

wire!

This is a common feature in many quantum algorithms with

exponential speedup.
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Simons Problem



Simons Problem

Problem: Given oracle access to f : {0, 1}n → {0, 1}n such that

there exists a nonzero secret string s ∈ {0, 1}n where for all

x , y ∈ {0, 1}n

f (x) = f (y) ⇔ x ⊕ y = s

find the secret string s.
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Simons Problem

Example function f :

x f (x)

000 101

001 010

010 000

011 110

100 000

101 110

110 101

111 010

What’s the secret s?
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Simons Problem

Problem: Given oracle access to f : {0, 1}n → {0, 1}n such that

there exists a nonzero secret string s ∈ {0, 1}n where for all

x , y ∈ {0, 1}n

f (x) = f (y) ⇔ x ⊕ y = s

find the secret string s.

Question: How many queries to f are needed to find the secret?
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Classical algorithm to solve Simons Problem

1. Randomly sample x1, . . . , xK ∈ {0, 1}n for K = 10
√
2n.

2. Check if there exists a pair xi ̸= xj where f (xi ) = f (xj). If so,

then output s = xi ⊕ xj .

By the birthday paradox, this algorithm will find the secret with

high probability. Requires O(2n/2) queries to f .

(Show on board)

2n/2 queries are necessary for any classical algorithm!
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Simons Algorithm

A quantum algorithm queries f by calling the 2n-qubit unitary Uf

that maps

| x︸︷︷︸
n qubits

, z︸︷︷︸
n qubits

⟩ 7→ |x , z ⊕ f (x)⟩

Here, ⊕ denotes bitwise addition.
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Simons Algorithm

Simons algorithm is a classical-quantum hybrid algorithm.

It uses the quantum computer as a subroutine to sample from a

distribution many times, and uses classical post-processing to

extract the secret.

Simons subroutine: Quantum circuit queries Uf once and obtains

a uniformly random string y ∈ {0, 1}n where inner product of y

and the secret s,

s · y = s1y1 ⊕ s2y2 ⊕ · · · ⊕ snyn

is equal to 0.

29



Simons Algorithm

Simons algorithm is a classical-quantum hybrid algorithm.

It uses the quantum computer as a subroutine to sample from a

distribution many times, and uses classical post-processing to

extract the secret.

Simons subroutine: Quantum circuit queries Uf once and obtains

a uniformly random string y ∈ {0, 1}n where inner product of y

and the secret s,

s · y = s1y1 ⊕ s2y2 ⊕ · · · ⊕ snyn

is equal to 0.

29



Simons algorithm, classical post-processing

Classical post-processing: Obtain m = 100n samples

y (1), y (2), . . . , y (m) such that

y (1) · s = 0

y (2) · s = 0

...

y (m) · s = 0

With high probability, can solve this system of linear equations

using Gaussian elimination to get s.
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Simons subroutine

|0n⟩ H⊗n

Uf

H⊗n

|0n⟩

H⊗n means applying H to n qubits independently.
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Hadamard math

We know that H |0⟩ = |+⟩. What is H⊗n |0⟩⊗n?

H⊗n |0⟩⊗n = (H |0⟩)⊗n = |+⟩⊗n .

This in turn is

|+⟩⊗n =
( 1√

2
|0⟩+ 1√

2
|1⟩
)⊗n

=
1√
2n

∑
x∈{0,1}n

|x1, . . . , xn⟩
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Hadamard math

Fix x1, . . . , xn ∈ {0, 1}. What is H⊗n |x1, . . . , xn⟩?

This is

(H |x1⟩)⊗ (H |x2⟩)⊗ · · · ⊗ (H |xn⟩)

=
1√
2n

(
|0⟩+ (−1)x1 |1⟩

)
⊗
(
|0⟩+ (−1)x2 |1⟩

)
⊗ · · · ⊗

(
|0⟩+ (−1)xn |1⟩

)
=

1√
2n

∑
y1,y2,...,yn∈{0,1}

(−1)x1y1 |y1⟩ · · · (−1)xnyn |yn⟩

=
1√
2n

∑
y∈{0,1}n

(−1)x·y |y⟩

where x · y denotes the inner product of the strings x and y

modulo 2:

x · y = x1y1 + · · ·+ xnyn mod 2 .
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Simons subroutine

|0n⟩ H⊗n

Uf

H⊗n

|0n⟩

Let’s analyze this on the board.
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Simons algorithm

• Makes O(n) queries to Uf and solves the problem with high

probability

• Once again, the valuable information is stored not in the

answer register of Uf , but in the input register.
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Simons algorithm

• Making crucial use of constructive/destructive interference!

• It’s finding global hidden structure in the function.

• Is this speedup more convincing?
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Simons algorithm

• Invented by Dan Simons in 1992, and was the first example of

a problem that could be solved exponentially faster with a

quantum algorithm compared to a classical randomized

algorithm.

• This algorithm directly inspired Peter Shor to invent the

famous factoring algorithm.

• Recently, Simons algorithm also has applications to breaking

symmetric key cryptography.
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Next time

Quantum Fourier Transform.
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