Week 5: Holveo's theorem and Introduction to Quantum Computation

COMS 4281 (Fall 2024)

- 1. Pset1 due Sunday, October 6, 11:59pm.
- 2. No practice worksheet/quiz this week.

- Partial measurements, non-standard measurements on entangled states
- Heisenberg Uncertainty
- Quantum teleportation
- EPR Paradox and Bell's theorem

How much information do qubits store?

An *n*-qubit state $|\psi\rangle$ on the surface looks like it contains exponential amounts of information, because it is represented by a vector of dimension 2^n .

In quantum computing/quantum mechanics, we want to harness this to our advantage.

But as mentioned before, there's a tension between the exponentiality of quantum states, and the fact that this is hidden behind a **veil of measurement**.

If we have n qubits, how much classical information can we store? Can we use n qubits as a "quantum hard drive" to store many more than n classical bits?

No! Holevo's theorem states that, for the purposes of **information storage**, quantum bits are not much better than classical bits!

Alice has an *m*-bit string X that she wants to transmit to Bob. She wants to encode X into some *n*-qubit quantum state $|\psi_X\rangle$ such that Bob can perform some computation (unitaries + measurement) to try to decode X.

Bob only gets X with high probability if the number of qubits n is at least m.

Pictorially:

Using preshared entanglement, Alice can save on the number of qubits she sends to convey X. This is achieved by a protocol known as **superdense coding**.

This allows Alice to convey *m* classical bits, while sending only n = m/2 qubits to Bob, provided they use preshared entanglement.

A simple equation describing superdense coding:

1ebit + 1qbit = 2cbits.

A simple equation describing superdense coding:

1ebit + 1qbit = 2cbits.

On the other hand, teleportation can be thought of as:

1ebit + 2cbits = 1qbit.

The protocol for superdense coding is very similar to teleportation. An EPR pair is shared (prepared by Charlie) is shared by Alice and Bob. Alice gets two bits (b_1, b_2) , which determines which operations she applies to her qubit.

Quantum Computation

It's whatever you can do with a quantum circuit, where (typically):

- 1. The input qubits start in the $\left|0\right\rangle$ state.
- 2. A sequence of single and two-qubit gates drawn from a **Gate Set**
- 3. Measurements (usually at the end)

What single- and two qubit gates are allowed in a quantum circuit?

What single- and two qubit gates are allowed in a quantum circuit? It depends on the hardware!

What single- and two qubit gates are allowed in a quantum circuit? It depends on the hardware!

A gate set G is called **universal** if, for any unitary U (which may act on many qubits), one can construct a circuit using gates from G to approximate U.

Definition: We say that unitary U ϵ -approximates V if for all quantum states $|\psi\rangle$,

$$\left\| U \left| \psi \right\rangle - V \left| \psi \right\rangle \right\| \leq \epsilon.$$

A circuit C without measurements corresponds to some unitary, so it is meaningful to say that a circuit C approximates a unitary matrix.

A continuous universal gate set: Rotations

$$\boxed{R_X(\theta)} = \begin{pmatrix} \cos\theta & -i\sin\theta \\ -i\sin\theta & \cos\theta \end{pmatrix} \qquad \boxed{R_Y(\theta)} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$\boxed{R_Z(\theta)} = \begin{pmatrix} e^{-i\theta} & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

over all $0 \le \theta \le 2\pi$ plus Phase shift

$$\boxed{P(\varphi)} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{pmatrix}$$

over all $0 \le \varphi \le 2\pi$ plus CNOT

and

A discrete, finite universal gate set:

$$\begin{bmatrix} H \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{bmatrix} S \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad \begin{bmatrix} \text{CNOT} \end{bmatrix}$$
$$\begin{bmatrix} T \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

Using a universal gate set G means, in principle we don't have to worry about what gates are used by a given quantum circuit C.

Using a universal gate set \mathcal{G} means, in principle we don't have to worry about what gates are used by a given quantum circuit C. That's because there is a way to **compile** the circuit C into another circuit C' that uses only gates from \mathcal{G} , and C approximates C'. Using a universal gate set \mathcal{G} means, in principle we don't have to worry about what gates are used by a given quantum circuit C. That's because there is a way to **compile** the circuit C into another circuit C' that uses only gates from \mathcal{G} , and C approximates C'. Ideally, we'd like the compiled circuit C' to be not much bigger than C. Let $\Gamma \subseteq \mathrm{SU}(2)$ (i.e. the set of single-qubit unitaries up to a global phase). Suppose

- 1. Γ generates a dense subgroup of SU(2).
- 2. Γ is closed under inverse.

Then for all $\epsilon > 0$ any unitary $U \in SU(2)$ can be ϵ -approximated by a product of at most $O(\log(\frac{1}{\epsilon}))$ gates from Γ .

Corollary: Let $\Gamma \subseteq SU(2)$ denote a set of single qubit unitaries satisfying conditions of Solovay-Kitaev theorem (an example is the set $\{H, T\}$). Then for all *n*, for all circuits *C* (allowed to use any single and two-qubit gates), for all $\epsilon > 0$

Corollary: Let $\Gamma \subseteq SU(2)$ denote a set of single qubit unitaries satisfying conditions of Solovay-Kitaev theorem (an example is the set $\{H, T\}$). Then for all *n*, for all circuits *C* (allowed to use any single and two-qubit gates), for all $\epsilon > 0$

There exists a circuit C' consisting of gates from $\Gamma \cup \{CNOT\}$ only that

- 1. ϵ -approximates C
- 2. number of gates in C' is at most number of gates in C times $O(\log(1/\epsilon))$.

In quantum computing, we often want to come up with a quantum circuit C to (approximately) implement some unitary U. Hopefully, the circuit C is not too large! This is called **quantum circuit synthesis**.

In quantum computing, we often want to come up with a quantum circuit C to (approximately) implement some unitary U. Hopefully, the circuit C is not too large! This is called **quantum circuit synthesis**.

How many single- and two-qubit gates are needed to build a circuit C that approximates a given unitary U?

In quantum computing, we often want to come up with a quantum circuit C to (approximately) implement some unitary U. Hopefully, the circuit C is not too large! This is called **quantum circuit synthesis**.

How many single- and two-qubit gates are needed to build a circuit C that approximates a given unitary U?

In general, at least $4^n!$

Our first quantum algorithm

Given oracle access to a boolean function $f : \{0, 1\} \rightarrow \{0, 1\}$, decide whether f(0) = f(1) or $f(0) \neq f(1)$.

Given oracle access to a boolean function $f : \{0,1\} \rightarrow \{0,1\}$, decide whether f(0) = f(1) or $f(0) \neq f(1)$.

Oracle access to a function *f* means that the computer can only access it as a **black-box**, i.e., query some inputs, and get the corresponding outputs. The computer cannot access how the black box is implemented.

Given oracle access to a boolean function $f : \{0,1\} \rightarrow \{0,1\}$, decide whether f(0) = f(1) or $f(0) \neq f(1)$.

Oracle access to a function *f* means that the computer can only access it as a **black-box**, i.e., query some inputs, and get the corresponding outputs. The computer cannot access how the black box is implemented.

Claim: Any classical algorithm that solves the Deutsch problem must make 2 queries to f.

Quantum algorithms can access a black-box function f through a unitary U_f corresponding to the **reversible** version of f. For $f : \{0, 1\} \rightarrow \{0, 1\}$, this is a two-qubit unitary

$$U_f |x, b\rangle = |x, b \oplus f(x)\rangle$$
.

A quantum circuit that wants to access f will simply call U_f just like any other two-qubit gate.

This quantum algorithm solves the Deutsch problem with **one** call to U_f .

This quantum algorithm solves the Deutsch problem with **one** call to U_f .

Let's do this on the board!

The algorithm evaluates the function f in **superposition**. This seems to give a 2x speedup!

Is this cheating? Maybe the "quantum access" is just really making multiple classical queries under the hood?

Observation: the qubit storing the answer at the end corresponds to the *input wire* of the oracle U_f . We don't care about the output wire!

This is a common feature in many quantum algorithms with exponential speedup.

Simons Problem

Problem: Given oracle access to $f : \{0,1\}^n \to \{0,1\}^n$ such that there exists a nonzero **secret string** $s \in \{0,1\}^n$ where for all $x, y \in \{0,1\}^n$

$$f(x) = f(y) \Leftrightarrow x \oplus y = s$$

find the secret string *s*.

Example function f:

X	f(x)
000	101
001	010
010	000
011	110
100	000
101	110
110	101
111	010

What's the secret s?

Problem: Given oracle access to $f : \{0,1\}^n \to \{0,1\}^n$ such that there exists a nonzero **secret string** $s \in \{0,1\}^n$ where for all $x, y \in \{0,1\}^n$

$$f(x) = f(y) \Leftrightarrow x \oplus y = s$$

find the secret string *s*.

Question: How many queries to *f* are needed to find the secret?

- 1. Randomly sample $x_1, \ldots, x_K \in \{0, 1\}^n$ for $K = 10\sqrt{2^n}$.
- 2. Check if there exists a pair $x_i \neq x_j$ where $f(x_i) = f(x_j)$. If so, then output $s = x_i \oplus x_j$.

- 1. Randomly sample $x_1, \ldots, x_K \in \{0, 1\}^n$ for $K = 10\sqrt{2^n}$.
- 2. Check if there exists a pair $x_i \neq x_j$ where $f(x_i) = f(x_j)$. If so, then output $s = x_i \oplus x_j$.

By the **birthday paradox**, this algorithm will find the secret with high probability. Requires $O(2^{n/2})$ queries to f.

(Show on board)

- 1. Randomly sample $x_1, \ldots, x_K \in \{0, 1\}^n$ for $K = 10\sqrt{2^n}$.
- 2. Check if there exists a pair $x_i \neq x_j$ where $f(x_i) = f(x_j)$. If so, then output $s = x_i \oplus x_j$.

By the **birthday paradox**, this algorithm will find the secret with high probability. Requires $O(2^{n/2})$ queries to f.

(Show on board)

 $2^{n/2}$ queries are necessary for any classical algorithm!

A quantum algorithm queries f by calling the 2n-qubit unitary U_f that maps

 $| \underbrace{x}_{x}, \underbrace{z}_{y} \rangle \mapsto |x, z \oplus f(x) \rangle$

n qubits n qubits

Here, \oplus denotes bitwise addition.

Simons algorithm is a **classical-quantum** hybrid algorithm.

It uses the quantum computer as a *subroutine* to sample from a distribution many times, and uses **classical post-processing** to extract the secret.

Simons algorithm is a **classical-quantum** hybrid algorithm.

It uses the quantum computer as a *subroutine* to sample from a distribution many times, and uses **classical post-processing** to extract the secret.

Simons subroutine: Quantum circuit queries U_f once and obtains a uniformly random string $y \in \{0, 1\}^n$ where inner product of y and the secret s,

$$s \cdot y = s_1 y_1 \oplus s_2 y_2 \oplus \cdots \oplus s_n y_n$$

is equal to 0.

Classical post-processing: Obtain m = 100n samples $y^{(1)}, y^{(2)}, \ldots, y^{(m)}$ such that

$$y^{(1)} \cdot s = 0$$
$$y^{(2)} \cdot s = 0$$
$$\vdots$$
$$v^{(m)} \cdot s = 0$$

Classical post-processing: Obtain m = 100n samples $y^{(1)}, y^{(2)}, \ldots, y^{(m)}$ such that

$$y^{(1)} \cdot s = 0$$
$$y^{(2)} \cdot s = 0$$
$$\vdots$$
$$y^{(m)} \cdot s = 0$$

With high probability, can solve this system of linear equations using Gaussian elimination to get s.

 $H^{\otimes n}$ means applying H to n qubits independently.

We know that $H|0\rangle = |+\rangle$. What is $H^{\otimes n}|0\rangle^{\otimes n}$?

We know that $H|0\rangle = |+\rangle$. What is $H^{\otimes n}|0\rangle^{\otimes n}$?

$$\left. H^{\otimes n} \left| 0 \right\rangle^{\otimes n} = \left(H \left| 0 \right\rangle \right)^{\otimes n} = \left| + \right\rangle^{\otimes n} \; .$$

We know that $H|0\rangle = |+\rangle$. What is $H^{\otimes n}|0\rangle^{\otimes n}$?

$$H^{\otimes n} \ket{0}^{\otimes n} = (H \ket{0})^{\otimes n} = \ket{+}^{\otimes n}$$
.

This in turn is

$$|+\rangle^{\otimes n} = \left(\frac{1}{\sqrt{2}}|0
angle + \frac{1}{\sqrt{2}}|1
angle
ight)^{\otimes n} = \frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x_1,\ldots,x_n
angle$$

Fix $x_1, \ldots, x_n \in \{0, 1\}$. What is $H^{\otimes n} | x_1, \ldots, x_n \rangle$?

Fix $x_1,\ldots,x_n\in\{0,1\}.$ What is $H^{\otimes n}\left|x_1,\ldots,x_n
ight
angle?$ This is

$$egin{aligned} &(H \left| x_1
ight
angle) \otimes (H \left| x_2
ight
angle) \otimes \cdots \otimes (H \left| x_n
ight
angle) \ &= rac{1}{\sqrt{2^n}} \Big(\left| 0
ight
angle + (-1)^{x_1} \left| 1
ight
angle \Big) \otimes \Big(\left| 0
ight
angle + (-1)^{x_2} \left| 1
ight
angle \Big) \otimes \cdots \otimes \Big(\left| 0
ight
angle + (-1)^{x_n} \left| 1
ight
angle \Big) \end{aligned}$$

Fix $x_1,\ldots,x_n\in\{0,1\}$. What is $H^{\otimes n}\,|x_1,\ldots,x_n
angle?$ This is

$$\begin{aligned} (H \mid x_1 \rangle) \otimes (H \mid x_2 \rangle) \otimes \cdots \otimes (H \mid x_n \rangle) \\ &= \frac{1}{\sqrt{2^n}} \Big(\mid 0 \rangle + (-1)^{x_1} \mid 1 \rangle \Big) \otimes \Big(\mid 0 \rangle + (-1)^{x_2} \mid 1 \rangle \Big) \otimes \cdots \otimes \Big(\mid 0 \rangle + (-1)^{x_n} \mid 1 \rangle \Big) \\ &= \frac{1}{\sqrt{2^n}} \sum_{y_1, y_2, \dots, y_n \in \{0, 1\}} (-1)^{x_1 y_1} \mid y_1 \rangle \cdots (-1)^{x_n y_n} \mid y_n \rangle \end{aligned}$$

Fix $x_1, \ldots, x_n \in \{0, 1\}$. What is $H^{\otimes n} | x_1, \ldots, x_n \rangle$? This is

$$\begin{aligned} (H | x_1 \rangle) \otimes (H | x_2 \rangle) \otimes \cdots \otimes (H | x_n \rangle) \\ &= \frac{1}{\sqrt{2^n}} \Big(|0\rangle + (-1)^{x_1} |1\rangle \Big) \otimes \Big(|0\rangle + (-1)^{x_2} |1\rangle \Big) \otimes \cdots \otimes \Big(|0\rangle + (-1)^{x_n} |1\rangle \Big) \\ &= \frac{1}{\sqrt{2^n}} \sum_{y_1, y_2, \dots, y_n \in \{0, 1\}} (-1)^{x_1 y_1} | y_1 \rangle \cdots (-1)^{x_n y_n} | y_n \rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{y \in \{0, 1\}^n} (-1)^{x \cdot y} | y \rangle \end{aligned}$$

where $x \cdot y$ denotes the inner product of the strings x and y modulo 2:

$$x \cdot y = x_1y_1 + \cdots + x_ny_n \mod 2$$

Let's analyze this on the board.

- Makes O(n) queries to U_f and solves the problem with high probability
- Once again, the valuable information is stored not in the answer register of U_f , but in the input register.

- Making crucial use of constructive/destructive interference!
- It's finding global hidden structure in the function.
- Is this speedup more convincing?

- Invented by Dan Simons in 1992, and was the first example of a problem that could be solved exponentially faster with a quantum algorithm compared to a classical randomized algorithm.
- This algorithm directly inspired Peter Shor to invent the famous factoring algorithm.
- Recently, Simons algorithm also has applications to breaking symmetric key cryptography.

Quantum Fourier Transform.