
Week 4: Heisenberg Uncertainty Principle,

EPR Paradox

COMS 4281 (Fall 2024)



Admin

1. Practice problem sheet available, quiz on Gradescope tonight.

Quizzes should be done individually.

2. Pset1 out, due October 6, 11:59pm.
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Recap

• Heisenberg Uncertainty Principle

• EPR Paradox
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Bell’s Theorem and the CHSH

Game



EPR Paradox

Einstein, Podolsky, and Rosen’s thought experiment about the

EPR pair:
1√
2

(
|00⟩+ |11⟩

)
If Alice measures in the standard basis and gets outcome |b⟩,
Bob’s qubit will collapse to |b⟩.

Otherwise, if Alice measures in the diagonal basis and gets

outcome |+⟩ or |−⟩, Bob’s qubit will collapse to that state too.
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Faster-than-light communication?

It sounds like measurement causes the state of far-away qubits to

change instantly. Can this be a mechanism to communicate

instantly to distant parts of the universe?

No! Alice, given her measurement outcome, knows the state of

Bob’s qubit. But she cannot control the outcome; it’s random.

Since it’s random, and Bob does not know the outcome, he cannot

predict the state of his qubit.
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EPR Paradox continued

Alice and Bob always get the same outcomes if they measure in

the same basis. To EPR, this seems to violate Heisenberg’s

Uncertainty Principle.

EPR proposed that Quantum Mechanics be replaced with a local

hidden variable theory. This should be

1. Consistent with QM

2. Not allow faster-than-light communication

3. All measurement outcomes are described by hidden,

underlying variables.
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Einstein spent the rest of his life hoping for a

classical replacement of Quantum Mechanics.

The EPR Paradox went unsolved for nearly 3

decades...
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Bell’s Theorem

John Bell (1964): No local hidden variable theory can be

compatible with Quantum Mechanics!

He devised an experiment, nowadays called a Bell test, such that

the predictions of Quantum Mechanics differ from the predictions

of any local hidden variable theory!
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CHSH Game

A simplification of Bell’s experiment, devised in 1970s by Clauser,

Horne, Shimony, Holt.

Setup

• Two cooperating, but separated players Alice and Bob.

• Referee who plays game with Alice and Bob.
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CHSH Game

1. Referee flips two coins to get random bits x , y ∈ {0, 1}
2. Sends x to Alice, y to Bob.

3. Alice responds with bit a, Bob responds with bit b.

4. Alice, Bob win if a⊕ b = x ∧ y
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CHSH Game

In other words:

x y Win condition

0 0 a = b

0 1 a = b

1 0 a = b

1 1 a ̸= b

What is maximum win probability for Alice and Bob?
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CHSH Game: Deterministic Strategies

Suppose Alice and Bob are deterministic.

This means Alice’s answer a is a fixed function a(x) of her

question. Similarly, Bob answers with a function b(y).

One can see, by trying all possible functions for Alice/Bob, the

maximum win probability is 3/4.

What’s a simple deterministic strategy that achieves 3/4?
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CHSH Game: Local Hidden Variable Strategies

Suppose Alice and Bob are described by local hidden variables.

This means that there is an underlying random variable λ, such

that

1. Before the game starts, λ is sampled from some distribution L
2. Questions (x , y) sampled independently of λ.

3. Alice’s answer is a function a(x , λ)

4. Bob’s answer is a function b(y , λ).

What is maximum win probability for Alice and Bob?
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CHSH Game: Local Hidden Variable Strategies

Being able to use hidden random variable λ does not help Alice

and Bob: their maximum win probability is 3/4.

Proof:

Pr[win] =
∑
λ

Pr[λ] · Pr[win | λ]

But if λ is fixed, then Alice and Bob’s answers are deterministic

functions of their questions only, meaning Pr[win | λ] ≤ 3
4 .

Therefore

Pr[win] ≤
∑
λ

Pr[λ] · 3
4
≤ 3

4
.
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CHSH Game: Local Hidden Variable Strategies

In other words, Einstein would’ve predicted that Alice and Bob

cannot win with probability greater than 3/4 in the CHSH game!
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CHSH Game: Quantum Strategy

What does Quantum Mechanics predict?

There exists a quantum strategy involving quantum

entanglement where Alice and Bob win with probability ≈ 85.4%.

This gives an experiment to rule out local hidden variable theories!
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CHSH Game: Quantum Strategy

1. Before the game starts, Alice and Bob get together and

generate an EPR pair

|Φ⟩ = 1√
2

(
|00⟩+ |11⟩

)
.

Alice takes one qubit and Bob takes another qubit, and they

go their separate ways.

2. When players get their question, they measure their qubit in a

basis to get a binary outcome which they map to 0 or 1 as

their answer.
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CHSH Game: Quantum Strategy

Alice’s measurements on her qubit, depending on her question x :

x = 0 x = 1
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CHSH Game: Quantum Strategy

Bob’s measurements on his qubit, depending on his question y :

y = 0:
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CHSH Game: Quantum Strategy

Bob’s measurements on his qubit, depending on his question y :

y = 1:
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CHSH Game: Quantum Strategy

How well does this strategy do? Suppose x = 0, y = 0.

Alice measures her qubit in standard basis. Bob measures using

this basis:
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How to analyze two simultaneous measurements on two separate

qubits?

We can pretend Alice measures first, and then Bob. Or vice versa!

Distributions of outcomes are identical

What happens when Alice measures her qubit of EPR pair in

standard basis?
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Alice gets |0⟩ with probability 1
2 , and joint state collapses to

|0⟩ ⊗ |0⟩.

To win, Bob must measure his qubit and get |s0⟩ outcome.

Since his qubit is now in |0⟩ state, he gets this outcome with

probability ∣∣∣⟨0 ∣∣∣ s0⟩∣∣∣2 = cos2(π/8) ≈ .8535 . . .
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On the other hand, Alice gets |1⟩ with probability 1
2 , and joint

state collapses to |1⟩ ⊗ |1⟩.

To win, Bob must measure his qubit and get |s1⟩ outcome.

Since his qubit is now in |1⟩ state, he gets this outcome with

probability ∣∣∣⟨1 ∣∣∣ s1⟩∣∣∣2 = cos2(π/8) ≈ .8535 . . .
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In either case they win with probability cos2(π/8) ≈ .8535 . . ..
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One more example: suppose x = 1, y = 1.

Alice measures her qubit in diagonal basis. Bob measures using

this basis:

In order to win, Alice and Bob’s answers must differ.
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If Alice measures |+⟩, then state collapses to |+⟩ ⊗ |+⟩ and Bob

must measure |t1⟩ = sin(π/8) |0⟩+ cos(π/8) |1⟩ to win. This

occurs with probability:

∣∣∣⟨+ ∣∣∣ t1⟩∣∣∣2 = cos2(ϕ)

where ϕ is the angle between |+⟩ and |t1⟩.
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∣∣∣⟨+ ∣∣∣ t1⟩∣∣∣2 = cos2(π/8) ≈ .8535 . . .

where π/8 is the angle between |+⟩ and |t1⟩.

If Alice measures |−⟩, then state collapses to |−⟩ ⊗ |−⟩ and Bob

must measure |t0⟩ = cos(π/8) |0⟩ − sin(π/8) |1⟩ to win. This

occurs with probability:
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CHSH Game: Quantum Strategy

Checking the other two cases (x = 1, y = 0 and x = 0, y = 1), you

see the they always win with probability cos2(π/8) ≈ .854 . . .. This

shows that there is quantum advantage for the players in the

CHSH game!

It turns out that cos2(π/8) is the best win probability for

quantum strategies. (This is known as Tsirelson’s theorem).
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The quantum advantage in the CHSH game comes from the

players’ entanglement.

Local measurements on entangled states give rise to correlations

that are stronger than any classical correlations.

These correlations are often called nonlocal.
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Experimental Confirmation of Bell’s Theorem

Over the years, many experiments conducted of Bell’s Theorem

(these are called Bell tests).

Starting in 1972, many tests (some based on CHSH game, others

different) conducted. All demonstrate winning probabilities that

cannot be explained by any LHV.

Conclusion:

1. Quantum mechanics is fundamentally a non-classical theory,

and Nature seems to be Quantum Mechanical.

2. Nature is intrinsically probabilistic.
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Practical Application of Bell’s Theorem

1. Randomness certification.

2. Verification of quantum computers.
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Next time

Quantum computing: Universal gate sets, and a (modest)

quantum speedup.
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