Week 4: Heisenberg Uncertainty Principle, EPR Paradox

COMS 4281 (Fall 2024)

- Practice problem sheet available, quiz on Gradescope tonight. Quizzes should be done individually.
- 2. Pset1 out (finally!), due October 6, 11:59pm.
- 3. Use qBraid instead of Google Colab.
- 4. Use EdStem to find pset collaborators. However you must write your own solutions.

- Seminar: Quantum Science with Tweezer Arrays.
 - When, where: Monday, Sept 23, 12:30pm, Pupin 8th floor.
 - Who: Manuel Endres (Caltech).



Figure 1: 6000 cesium atoms

- Partial measurements
- Quantum teleportation
- Non-standard measurements

Heisenberg Uncertainty Principle

Popular science version: can't exactly know both the position and momentum of a particle simultaneously.

In quantum information theory terms: it is not possible for a qubit $|\psi\rangle\in\mathbb{C}^2$ to be simultaneously determined in both the **standard** basis and the **diagonal basis**.

In quantum information theory terms: it is not possible for a qubit $|\psi\rangle \in \mathbb{C}^2$ to be simultaneously determined in both the **standard** basis and the **diagonal basis**.

In other words, if measuring $|\psi\rangle$ in standard basis yields a deterministic outcome, then it **cannot** have a deterministic outcome if measured according to diagonal basis.

Important point: it's not about what happens if you sequentially measure the state $|\psi\rangle$ (what happens then?).

Important point: it's not about what happens if you **sequentially** measure the state $|\psi\rangle$ (what happens then?).

It's reasoning about **counterfactual scenarios**: measuring $|\psi\rangle$ in the standard basis, **or** measuring $|\psi\rangle$ in the diagonal basis.

We say that the standard basis and diagonal basis are **incompatible** or **complementary**.

In quantum physics, the position and momentum of a particle correspond to incompatible measurements!

EPR Paradox

The EPR Paradox

In 1935, Einstein, Podolsky, and Rosen published a paper called

Can Quantum-Mechanical Description of Physical Reality be Considered Complete? The EPR thesis:

Quantum mechanics may be very good at predicting outcomes of experiments, but it cannot be a **complete** *description of Nature.*

The reason they thought this was because of a thought experiment.

Alice and Bob are in far-away galaxies and share the EPR state

$$|\Phi
angle = rac{1}{\sqrt{2}} \Big(\left|00
ight
angle + \left|11
ight
angle \Big).$$

Alice and Bob are in far-away galaxies and share the EPR state

$$|\Phi
angle = rac{1}{\sqrt{2}} \Big(\left|00
ight
angle + \left|11
ight
angle \Big).$$

Consider two possible experiments:

- Experiment A: Alice measures her qubit in the standard basis $\{ |0\rangle\,, |1\rangle \}$
- Experiment B: Alice measures her qubit in the diagonal basis $\{|+\rangle\,, |-\rangle\}$

Alice gets outcome

- $|0\rangle$ with probability 1/2, and the post-measurement state is $|00\rangle.$
- $|1\rangle$ with probability 1/2, and the post-measurement state is $|11\rangle.$

To calculate the probability of getting outcome $|+\rangle,$ we use the partial measurement + nonstandard basis rules: first, compute the vector

$$|v_{+}\rangle = \left(\langle +|\otimes I \right) |\Phi\rangle = \frac{1}{\sqrt{2}} \left(\langle +|0\rangle |0\rangle + \langle +|1\rangle |1\rangle \right)$$

To calculate the probability of getting outcome $|+\rangle,$ we use the partial measurement + nonstandard basis rules: first, compute the vector

$$\begin{aligned} |v_{+}\rangle &= \left(\langle +|\otimes I \rangle |\Phi\rangle = \frac{1}{\sqrt{2}} \left(\langle +|0\rangle |0\rangle + \langle +|1\rangle |1\rangle \right) \\ &= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) = \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle \,. \end{aligned}$$

The squared length is $||v_+\rangle ||^2 = \frac{1}{2^2} + \frac{1}{2^2} = \frac{1}{2}$.

The post-measurement state is then $\sqrt{2} |+\rangle \otimes |v_+\rangle = |+\rangle \otimes |+\rangle$.

The post-measurement state is then $\sqrt{2} |+\rangle \otimes |v_+\rangle = |+\rangle \otimes |+\rangle$. Similarly, the probability of getting outcome $|-\rangle$ is $\frac{1}{2}$ and the post-measurement state is $|-\rangle \otimes |-\rangle$. Alice and Bob are in far-away galaxies and share the EPR state $|\Phi\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$. If Alice measures in standard basis, after seeing her result she knows exactly what state Bob's qubit is in – even if Bob's qubit is zillions of lightyears away.

The EPR Paradox

Einstein's (and Podolsky's and Rosen's) reasoning:

1. If Alice did Experiment A and got outcome (say) $|0\rangle$, then it must have been Bob's qubit was really $|0\rangle$ all along.

Einstein's (and Podolsky's and Rosen's) reasoning:

- 1. If Alice did Experiment A and got outcome (say) $|0\rangle$, then it must have been Bob's qubit was really $|0\rangle$ all along.
- 2. On the other hand, if Alice did Experimeent B and got outcome (say) $|-\rangle$, then it must have been Bob's qubit was really $|-\rangle$ all along.

Einstein's (and Podolsky's and Rosen's) reasoning:

- 1. If Alice did Experiment A and got outcome (say) $|0\rangle$, then it must have been Bob's qubit was really $|0\rangle$ all along.
- 2. On the other hand, if Alice did Experimeent B and got outcome (say) $|-\rangle$, then it must have been Bob's qubit was really $|-\rangle$ all along.
- 3. But Alice's choice of measurement (standard or diagonal) couldn't have made an instantaneous difference in intrinsic the state of Bob's qubit, right?

Einstein's (and Podolsky's and Rosen's) reasoning:

- 1. If Alice did Experiment A and got outcome (say) $|0\rangle$, then it must have been Bob's qubit was really $|0\rangle$ all along.
- 2. On the other hand, if Alice did Experimeent B and got outcome (say) $|-\rangle$, then it must have been Bob's qubit was really $|-\rangle$ all along.
- 3. But Alice's choice of measurement (standard or diagonal) couldn't have made an instantaneous difference in intrinsic the state of Bob's qubit, right?
- 4. Therefore Bob's qubit must have answers prepared for both Experiments simultaneously – violating Heisenberg's Uncertainty Principle!

EPR's conclusion: Quantum Mechanics can make the right statistical predictions. But it's just a **mathematical model** that doesn't actually describe the way Reality works.

EPR's conclusion: Quantum Mechanics can make the right statistical predictions. But it's just a **mathematical model** that doesn't actually describe the way Reality works.

EPR's thesis: There is a **deeper** classical theory – called a **local hiden variable theory** – that

- Reproduces the same statistics as Quantum Mechanics
- But has hidden variables that describes the intrinsic state of particles.
- Respects the speed of light limit.

What do you think of Einstein's reasoning? It is a paradox?