Week 6: Phase Estimation and the RSA Cryptosystem

COMS 4281 (Fall 2024)

- 1. Practice worksheet out, and quiz #3 will be out tonight.
- 2. Midterm on October 21. More details soon.

Discrete Fourier Transform F_N is a unitary matrix mapping standard basis {|0⟩,..., |N − 1⟩} to Fourier basis {|f₀⟩, |f₁⟩,..., |f_{N−1}⟩} where

$$|f_j
angle = rac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{rac{2\pi ijk}{N}} |k
angle \; .$$

The Quantum Fourier Transform is a fast quantum algorithm that implements the DFT F_N for N = 2ⁿ, and runs in time poly(n) = poly(log N).

Brief linear algebra review

If $M\in\mathbb{C}^{N\times N}$ is a matrix, $|\psi\rangle\in\mathbb{C}^N$ is a vector, and $\lambda\in\mathbb{C}$ satisfying

$$M \left| \psi \right\rangle = \lambda \left| \psi \right\rangle$$

then we say that $|\psi\rangle$ is an **eigenvector** of *M* with **eigenvalue** λ .

Proof: Suppose that $U |\psi\rangle = \lambda |\psi\rangle$ for some eigenvector $|\psi\rangle$ and some eigenvalue λ .

Proof: Suppose that $U |\psi\rangle = \lambda |\psi\rangle$ for some eigenvector $|\psi\rangle$ and some eigenvalue λ .

Taking inner products of $\lambda \left| \psi \right\rangle$ with itself, on one hand we get

$$(\lambda^* \langle \psi |) (\lambda | \psi \rangle) = |\lambda|^2 \langle \psi | \psi \rangle = |\lambda|^2 .$$

Proof: Suppose that $U |\psi\rangle = \lambda |\psi\rangle$ for some eigenvector $|\psi\rangle$ and some eigenvalue λ .

Taking inner products of $\lambda \left| \psi \right\rangle$ with itself, on one hand we get

$$(\lambda^* \langle \psi |) (\lambda | \psi \rangle) = |\lambda|^2 \langle \psi | \psi \rangle = |\lambda|^2 .$$

On the other hand,

 $(\lambda^* \langle \psi |) (\lambda | \psi \rangle) = (\langle \psi | U^{\dagger}) (U | \psi \rangle) = \langle \psi | U^{\dagger} U | \psi \rangle = \langle \psi | \psi \rangle = 1$

because $U^{\dagger}U = I$ (one of definitions of being unitary).

Proof continued: Therefore

$$|\lambda|^2 = 1$$

and the only such λ 's possible are of the form $e^{2\pi i\theta}$.

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

We see that

$$Z \left| 0
ight
angle = \left| 0
ight
angle \qquad Z = \left| 1
ight
angle = - \left| 1
ight
angle \; .$$

Therefore standard basis are the eigenvectors and ± 1 are corresponding eigenvalues.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

We can compute this by hand, or we can also remember that

$$X \ket{+} = \ket{+}$$
 $X \ket{-} = - \ket{-}$

so the Hadamard basis are the eigenvectors and ± 1 are the corresponding eigenvalues.

$$CNOT = egin{pmatrix} 1 & 0 & & & \ 0 & 1 & & & \ & & 0 & 1 & \ & & & 1 & 0 \end{pmatrix}.$$

$$CNOT = egin{pmatrix} 1 & 0 & & & \ 0 & 1 & & & \ & & 0 & 1 & \ & & & 1 & 0 \end{pmatrix}.$$

- 1. $|0,0\rangle$ with eigenvalue 1
- 2. $|0,1\rangle$ with eigenvalue 1
- 3. $|1,+\rangle$ with eigenvalue 1
- 4. $|1,-\rangle$ with eigenvalue -1

Phase Estimation Algorithm

Phase Estimation Algorithm (PEA) is one of the most important subroutines in quantum computing.

Phase Estimation Algorithm (PEA) is one of the most important subroutines in quantum computing.

Goal of PEA:

- Ability to run controlled versions of U^k for k = 1, 2, ...
- An eigenstate $|\psi\rangle$ where $U |\psi\rangle = e^{2\pi i \theta} |\psi\rangle$,

estimate θ .

Question: The eigenvalue $e^{2\pi i\theta}$ looks like a global phase... how can you possibly estimate it?

Question: The eigenvalue $e^{2\pi i\theta}$ looks like a global phase... how can you possibly estimate it?

Answer: It becomes a **relative** phase once you run the controlled-U gate in superposition:

$$egin{aligned} cU \ket{+} \ket{\psi} &= rac{1}{\sqrt{2}} (\ket{0} \ket{\psi} + \ket{1} U \ket{\psi}) \ &= rac{1}{\sqrt{2}} (\ket{0} \ket{\psi} + e^{2\pi i heta} \ket{1} \ket{\psi}) \ &= rac{1}{\sqrt{2}} (\ket{0} + e^{2\pi i heta} \ket{1}) \ket{\psi} \end{aligned}$$

Assume for simplicity that θ can be represented using exactly t bits. In other words the binary representation of θ looks like

$$\theta = 0.\theta_1 \theta_2 \cdots \theta_t$$

where $\theta_1, \theta_2, \ldots \in \{0, 1\}$. This is equivalent to

$$\theta = \frac{\theta_1}{2} + \frac{\theta_2}{2^2} + \dots + \frac{\theta_t}{2^t}.$$

Phase Estimation Algorithm

Measuring the first *t* qubits will yield $|\theta_1, \theta_2, \ldots, \theta_t\rangle$.

Let's analyze a special case where t = 2, and $\theta = \frac{\theta_1}{2} + \frac{\theta_2}{4}$ for $\theta_1, \theta_2 \in \{0, 1\}$. (On the board...)

Question: What if the phase θ cannot be exactly expressed as t bits?

Question: What if the phase θ cannot be exactly expressed as t bits?

Answer: If we use t + k ancilla qubits, and measure only the first t ancilla qubits, we will get the best t-bit approximation $\tilde{\theta}$ of θ with probability $1 - 2^{-k}$.

Question: What happens if $|\psi\rangle$ is not an eigenvector of U?

Question: What happens if $|\psi\rangle$ is not an eigenvector of *U*? **Answer**: The set $\{|\phi_j\rangle\}$ of eigenvectors of *U* forms a basis for \mathbb{C}^{2^n} (if *U* is *n*-qubit unitary). We can write $|\psi\rangle$ as

$$\left|\psi\right\rangle = \sum_{j} \alpha_{j} \left|\phi_{j}\right\rangle$$

for some coefficients α_i .

Running Phase Estimation on $|\psi\rangle$ with ancilla qubits $|0\cdots0\rangle$ yields a state that is close to

$$\approx \sum_{j} \alpha_{j} \left| \phi_{j} \right\rangle \otimes \left| \widetilde{\theta}_{j} \right\rangle$$

where $\tilde{\theta}_j$ is an approximation of the eigenphase θ_j , i.e. $U |\phi_j\rangle = e^{2\pi i \theta_j} |\phi_j\rangle.$ Running Phase Estimation on $|\psi\rangle$ with ancilla qubits $|0\cdots0\rangle$ yields a state that is close to

$$\approx \sum_{j} \alpha_{j} \left| \phi_{j} \right\rangle \otimes \left| \widetilde{\theta}_{j} \right\rangle$$

where $\tilde{\theta}_j$ is an approximation of the eigenphase θ_j , i.e. $U |\phi_j\rangle = e^{2\pi i \theta_j} |\phi_j\rangle.$

Measuring the last register yields $\tilde{\theta}_j$ with probability $|\alpha_j|^2$.

RSA and the Factoring problem

- Invented by Rivest, Shamir, and Adleman in 1977
- Most widely deployed public-key cryptosystem
- Enables public-key encryption as well as digital signatures

- Bob generates a secret-key/public-key pair (sk, pk), and publishes pk on the internet.
- 2. Alice uses *pk* and her message *m* to create a *ciphertext c* which she sends to Bob.
- 3. Bob gets c, and uses sk to decode m.
- The adversary sees (pk, c), and should get no information about m.

1. Pick random prime numbers p, q, and set N = pq.

- 1. Pick random prime numbers p, q, and set N = pq.
- 2. Pick random prime number $1 \le e \le (p-1)(q-1)$.

- 1. Pick random prime numbers p, q, and set N = pq.
- 2. Pick random prime number $1 \le e \le (p-1)(q-1)$.
- 3. Compute integer d where $ed = 1 \mod (p-1)(q-1)$.

- 1. Pick random prime numbers p, q, and set N = pq.
- 2. Pick random prime number $1 \le e \le (p-1)(q-1)$.
- 3. Compute integer d where $ed = 1 \mod (p-1)(q-1)$.
- 4. Set public key pk = (e, N), and secret key sk = d.

Alice gets a message $1 \le m < N$. She computes and sends $c = m^e \mod N$, and send c to Bob.

Alice gets a message $1 \le m < N$. She computes and sends $c = m^e \mod N$, and send c to Bob.

Bob computes $m' = c^d \mod N$ to decode the message.

Alice gets a message $1 \le m < N$. She computes and sends $c = m^e \mod N$, and send c to Bob.

Bob computes $m' = c^d \mod N$ to decode the message.

This works because $c^d = (m^e)^d = m^{ed}$, and modulo N this equals m by Fermat's Little Theorem.

Adversary sees the public key pk = (e, N) and the encrypted message (ciphertext) c.

It does not know the primes p, q, nor the secret key sk = d.

Adversary sees the public key pk = (e, N) and the encrypted message (ciphertext) c.

It does not know the primes p, q, nor the secret key sk = d. If it knew the prime factorization N = pq it could compute the secret key! **Input**: Positive integer *N*.

Output: Prime factorization of N as $p_1^{a_1}p_2^{a_2}\cdots$.

Input: Positive integer *N*.

Output: Prime factorization of N as $p_1^{a_1} p_2^{a_2} \cdots$.

The prime factorization of N is unique by the **Fundamental Theorem of Arithmetic**.

To find a factorization of N, it suffices to be able to find *some* nontrivial divisor of N.

It is widely believed that Factoring is hard for classical computers. The best classical algorithm, known as the **General Number Field Sieve**, takes time roughly

$$\exp\left(O(\log N)^{1/3}
ight)$$
 .

This is essentially **exponential** in the number of digits of N.

A quantum algorithm to solve Factoring in poly(log N) steps. Discovered by Peter Shor in 1993. He was inspired by Simon's Algorithm. A quantum algorithm to solve Factoring in poly(log N) steps. Discovered by Peter Shor in 1993. He was inspired by Simon's Algorithm.

Shor's Algorithm is also a hybrid classical-quantum algorithm.

- 1. Classical part: reduce the factoring problem to order finding.
- 2. Quantum part: solve order finding.

Input: given positive integers N, x such that

- 1. $1 \le x < N$
- gcd(N,x) = 1 (i.e. they do not have any nontrivial factors in common)

Input: given positive integers N, x such that

- 1. $1 \le x < N$
- gcd(N,x) = 1 (i.e. they do not have any nontrivial factors in common)

Output: find smallest integer r such that $x^r = 1 \mod N$ (called the order of x mod N).

A quantum algorithm to solve Order Finding