
Week 6: Phase Estimation and the RSA

Cryptosystem

COMS 4281 (Fall 2024)



Admin

1. Practice worksheet out, and quiz #3 will be out tonight.

2. Midterm on October 21. More details soon.
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Last time

• Discrete Fourier Transform FN is a unitary matrix mapping

standard basis {|0⟩ , . . . , |N − 1⟩} to Fourier basis

{|f0⟩ , |f1⟩ , . . . , |fN−1⟩} where

|fj⟩ =
1√
N

N−1∑
k=0

e
2πijk
N |k⟩ .

• The Quantum Fourier Transform is a fast quantum

algorithm that implements the DFT FN for N = 2n, and runs

in time poly(n) = poly(logN).
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Brief linear algebra review



Eigenvalues

If M ∈ CN×N is a matrix, |ψ⟩ ∈ CN is a vector, and λ ∈ C
satisfying

M |ψ⟩ = λ |ψ⟩

then we say that |ψ⟩ is an eigenvector of M with eigenvalue λ.
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Eigenvalues of unitary matrices

Fact: The eigenvalues of a unitary matrix U are all of the form

e2πiθ for some θ ∈ [0, 2π).

Proof: Suppose that U |ψ⟩ = λ |ψ⟩ for some eigenvector |ψ⟩ and
some eigenvalue λ.

Taking inner products of λ |ψ⟩ with itself, on one hand we get

(λ∗ ⟨ψ|)(λ |ψ⟩) = |λ|2 ⟨ψ|ψ⟩ = |λ|2 .

On the other hand,

(λ∗ ⟨ψ|)(λ |ψ⟩) = (⟨ψ|U†)(U |ψ⟩) = ⟨ψ|U†U |ψ⟩ = ⟨ψ|ψ⟩ = 1

because U†U = I (one of definitions of being unitary).
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Eigenvalues of unitary matrices

Fact: The eigenvalues of a unitary matrix U are all of the form

e2πiθ for some θ ∈ [0, 2π).

Proof continued: Therefore

|λ|2 = 1

and the only such λ’s possible are of the form e2πiθ.
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Some examples

Example: What are the eigenvalues and eigenvectors of

Z =

(
1 0

0 −1

)

We see that

Z |0⟩ = |0⟩ Z = |1⟩ = − |1⟩ .

Therefore standard basis are the eigenvectors and ±1 are

corresponding eigenvalues.
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Some examples

Example: What are the eigenvalues and eigenvectors of

X =

(
0 1

1 0

)
.

We can compute this by hand, or we can also remember that

X |+⟩ = |+⟩ X |−⟩ = − |−⟩

so the Hadamard basis are the eigenvectors and ±1 are the

corresponding eigenvalues.
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Some examples

Example: What are the eigenvalues and eigenvectors of

CNOT =


1 0

0 1

0 1

1 0

 .

1. |0, 0⟩ with eigenvalue 1

2. |0, 1⟩ with eigenvalue 1

3. |1,+⟩ with eigenvalue 1

4. |1,−⟩ with eigenvalue −1
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Phase Estimation Algorithm



Application of QFT: Phase Estimation

Phase Estimation Algorithm (PEA) is one of the most important

subroutines in quantum computing.

Goal of PEA:

• Ability to run controlled versions of Uk for k = 1, 2, . . ..

• An eigenstate |ψ⟩ where U |ψ⟩ = e2πiθ |ψ⟩,

estimate θ.
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Question: The eigenvalue e2πiθ looks like a global phase... how

can you possibly estimate it?

Answer: It becomes a relative phase once you run the

controlled-U gate in superposition:

cU |+⟩ |ψ⟩ = 1√
2
(|0⟩ |ψ⟩+ |1⟩U |ψ⟩)

=
1√
2
(|0⟩ |ψ⟩+ e2πiθ |1⟩ |ψ⟩)

=
1√
2
(|0⟩+ e2πiθ |1⟩) |ψ⟩

10



Question: The eigenvalue e2πiθ looks like a global phase... how

can you possibly estimate it?

Answer: It becomes a relative phase once you run the

controlled-U gate in superposition:

cU |+⟩ |ψ⟩ = 1√
2
(|0⟩ |ψ⟩+ |1⟩U |ψ⟩)

=
1√
2
(|0⟩ |ψ⟩+ e2πiθ |1⟩ |ψ⟩)

=
1√
2
(|0⟩+ e2πiθ |1⟩) |ψ⟩

10



Phase Estimation Algorithm

Assume for simplicity that θ can be represented using exactly t

bits. In other words the binary representation of θ looks like

θ = 0.θ1θ2 · · · θt

where θ1, θ2, . . . ∈ {0, 1}. This is equivalent to

θ =
θ1
2

+
θ2
22

+ · · ·+ θt
2t
.
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Phase Estimation Algorithm

Measuring the first t qubits will yield |θ1, θ2, . . . , θt⟩.
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Phase Estimation Algorithm Analysis

Let’s analyze a special case where t = 2, and θ = θ1
2 + θ2

4 for

θ1, θ2 ∈ {0, 1}.

(On the board...)
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Phase Estimation Algorithm Analysis

Question: What if the phase θ cannot be exactly expressed as t

bits?

Answer: If we use t + k ancilla qubits, and measure only the first

t ancilla qubits, we will get the best t-bit approximation θ̃ of θ

with probability 1− 2−k .
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Phase Estimation Algorithm Analysis

Question: What happens if |ψ⟩ is not an eigenvector of U?

Answer: The set {|ϕj⟩} of eigenvectors of U forms a basis for C2n

(if U is n-qubit unitary). We can write |ψ⟩ as

|ψ⟩ =
∑
j

αj |ϕj⟩

for some coefficients αj .
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Running Phase Estimation on |ψ⟩ with ancilla qubits |0 · · · 0⟩ yields
a state that is close to

≈
∑
j

αj |ϕj⟩ ⊗ |θ̃j⟩

where θ̃j is an approximation of the eigenphase θj , i.e.

U |ϕj⟩ = e2πiθj |ϕj⟩.

Measuring the last register yields θ̃j with probability |αj |2.
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RSA and the Factoring problem



RSA Cryptosystem

• Invented by Rivest, Shamir, and Adleman in 1977

• Most widely deployed public-key cryptosystem

• Enables public-key encryption as well as digital signatures
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Public key encryption

1. Bob generates a secret-key/public-key pair (sk, pk), and

publishes pk on the internet.

2. Alice uses pk and her message m to create a ciphertext c

which she sends to Bob.

3. Bob gets c , and uses sk to decode m.

4. The adversary sees (pk, c), and should get no information

about m.
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RSA Cryptosystem

Bob

1. Pick random prime numbers p, q, and set N = pq.

2. Pick random prime number 1 ≤ e ≤ (p − 1)(q − 1).

3. Compute integer d where ed = 1 mod (p − 1)(q − 1).

4. Set public key pk = (e,N), and secret key sk = d .
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RSA Cryptosystem

Alice gets a message 1 ≤ m < N. She computes and sends

c = me mod N, and send c to Bob.

Bob computes m′ = cd mod N to decode the message.

This works because cd = (me)d = med , and modulo N this equals

m by Fermat’s Little Theorem.
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RSA Cryptosystem

Adversary sees the public key pk = (e,N) and the encrypted

message (ciphertext) c .

It does not know the primes p, q, nor the secret key sk = d .

If it knew the prime factorization N = pq it could compute the

secret key!
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Factoring problem

Input: Positive integer N.

Output: Prime factorization of N as pa11 pa22 · · · .

The prime factorization of N is unique by the Fundamental

Theorem of Arithmetic.

To find a factorization of N, it suffices to be able to find some

nontrivial divisor of N.
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Factoring problem

It is widely believed that Factoring is hard for classical computers.

The best classical algorithm, known as the General Number Field

Sieve, takes time roughly

exp
(
O(logN)1/3

)
.

This is essentially exponential in the number of digits of N.
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Shor’s algorithm

A quantum algorithm to solve Factoring in poly(logN) steps.

Discovered by Peter Shor in 1993. He was inspired by Simon’s

Algorithm.

Shor’s Algorithm is also a hybrid classical-quantum algorithm.

1. Classical part: reduce the factoring problem to order

finding.

2. Quantum part: solve order finding.
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Order Finding

Input: given positive integers N, x such that

1. 1 ≤ x < N

2. gcd(N, x) = 1 (i.e. they do not have any nontrivial factors in

common)

Output: find smallest integer r such that x r = 1 mod N (called

the order of x mod N).
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Next time

A quantum algorithm to solve Order Finding
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