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Recap of Grover search

Given query access to f : {0, 1}n → {0, 1}, find a marked input x

such that f (x) = 1.

• Classical algorithms: Need at least ∼ N queries to f .

• Grover’s algorithm: ∼
√
N queries suffices.

(Remember that N = 2n)
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Recap of Grover search

The algorithm:

1. Start with |+⟩⊗n.

2. Run k = O(
√
N) iterations of the Grover iterate

where R = 2 |+⟩ ⟨+|⊗n − I is the Grover diffusion operator.
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Analysis of Grover’s algorithm (attempt #2)

Let x∗ denote the unique marked input.

Important fact: The intermediate states of Grover’s algorithm are

linear combinations of

|x∗⟩ and |∆⟩ = 1√
2n − 1

∑
x ̸=x∗

|x⟩

We can prove this via induction.

4



Base case

Base case: initial state

|+⟩⊗n =
1√
2n

∑
x

|x⟩ =
√

2n − 1

2n
|∆⟩+ 1√

2n
|x∗⟩
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Inductive step

Assume that an intermediate state of Grover’s algorithm has form

|ψ⟩ = α |∆⟩+ β |x∗⟩.

Claim: Of |ψ⟩ is linear combination of |∆⟩ , |x∗⟩.

Proof:

Of (α |∆⟩+ β |x∗⟩) = αOf |∆⟩+ βOf |x∗⟩
= α |∆⟩ − β |x∗⟩ .
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Dirac notation interlude

When we write |+⟩⟨+|, we mean the outer product

1√
2

(
1

1

)
1√
2

(
1 1

)
=

1

2

(
1 1

1 1

)
.

When we write |+⟩⟨+|⊗n, we mean

|+⟩⟨+| ⊗ |+⟩⟨+| ⊗ · · · ⊗ |+⟩⟨+| = (|+⟩⟨+|)⊗n .

which is an n-qubit matrix of size 2n × 2n.
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Dirac notation interlude
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Dirac notation interlude

These are three different ways of writing the same thing!

|+⟩⊗n ⟨+|⊗n = (|+⟩⟨+|)⊗n = |+⟩⟨+|⊗n .
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Inductive step

Assume that an intermediate state of Grover’s algorithm has form

|ψ⟩ = α |∆⟩+ β |x∗⟩.

Claim: R |ψ⟩ is linear combination of |∆⟩ , |x∗⟩.

Proof:

Rf |ψ⟩ = (2 |+⟩ ⟨+|⊗n − I ) |ψ⟩
= 2 |+⟩⊗n (⟨+|⊗n |ψ⟩)︸ ︷︷ ︸

number!

− |ψ⟩

Recall |+⟩⊗n is a linear combination of |∆⟩ , |x∗⟩, and so is |ψ⟩ by
assumption.

Thus Rf |ψ⟩ is a linear combination of |∆⟩ , |x∗⟩.
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Analysis of Grover’s algorithm

Claim: After k Grover iterations, the state of the algorithm is

|ψ⟩ = cos((2k + 1)θ) |∆⟩+ sin((2k + 1)θ) |x∗⟩

where θ = sin−1(
√
1/N).

We prove this by induction.

Base case: k = 0. The initial state can be written as

|+⟩⊗n =

√
N − 1

N
|∆⟩+

√
1

N
|x∗⟩ .
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|ψ⟩ = cos((2k + 1)θ) |∆⟩+ sin((2k + 1)θ) |x∗⟩
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Inductive step: Assume true for k ≥ 1. Then one more Grover

iteration yields
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Analysis of Grover’s algorithm

R |∆⟩ = (2 |+⟩⟨+|⊗n − I ) |∆⟩

= 2 |+⟩⊗n
(
⟨+|⊗n |∆⟩

)
− |∆⟩

= 2

√
N − 1

N
|+⟩⊗n − |∆⟩

= 2

√
N − 1

N

(√N − 1

N
|∆⟩+

√
1

N
|x∗⟩

)
− |∆⟩

=
N − 2

N
|∆⟩+ 2

√
N − 1

N
|x∗⟩

= cos(2θ) |∆⟩+ sin(2θ) |x∗⟩ .
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Analysis of Grover’s algorithm

Similarly,

R |x∗⟩ = sin(2θ) |∆⟩+ cos(2θ) |x∗⟩ .

Thus we get

ROf |ψ⟩ = cos((2k + 1)θ)
(
cos(2θ) |∆⟩+ sin(2θ) |x∗⟩

)
− sin((2k + 1)θ)

(
sin(2θ) |∆⟩+ cos(2θ) |x∗⟩

)

= cos((2k + 3)θ) |∆⟩+ sin((2k + 3)θ) |x∗⟩

as desired.
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Multiple solutions

If there are M > 1 solutions, then can find a solution with

O(
√
N/M) queries.

The intermediate states of the algorithm are in the span of

• |Γ⟩ = 1√
M

∑
x :f (x)=1 |x⟩, uniform superposition over all

solutions

• |∆⟩ = 1√
N−M

∑
x :f (x)=0 |x⟩, uniform superposition over all

non-solutions

In the end, the output is a random solution.
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Multiple solutions

What if you wanted to output all solutions?

There is O(
√
NM) query solution:

1. Use
√

N
M queries to find the first solution x1.

2. Run Grover search with updated oracle f1 where x1 is

excluded. This finds solution x2 with
√

N
M−1 queries.

3. Update the oracle to exclude x2. Find another solution x3, etc.
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Multiple solutions

The total number of queries is

√
N

M
+

√
N

M − 1
+ · · ·+

√
N

1

=
M−1∑
j=0

√
N

M − j
≤
∫ M−1

0

√
N

M − x
dx

≤ O(
√
NM)
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Quantum counting

What if you wanted to count the number of solutions, not just

find them?

Given query access to f : {0, 1}n → {0, 1}, output an estimate M̃

of the number of marked inputs M, such that

(1− ϵ)M ≤ M̃ ≤ (1 + ϵ)M.

Solution: Grover search + phase estimation.
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Quantum counting

Recall that for Phase Estimation, we need:

1. (Controlled) unitary U (and its powers)

2. An eigenvector of U with eigenvalue e iθ

We output an estimate θ̃ for θ.
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Quantum counting

Unitary: we’ll use the Grover iterate G = ROf .

On the 2-dimensional subspace span{|Γ⟩ , |∆⟩}, this is the rotation

matrix

(
cos 2θ − sin 2θ

sin 2θ cos 2θ

)

where sin θ =
√
M/N. The eigenvalues of this are e i2θ and e−i2θ.
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Quantum counting

The nontrivial eigenvectors of G are:

|ψ±⟩ =
1√
2

(
|Γ⟩ ± i |∆⟩

)
.

We run Phase Estimation with the state |+⟩⊗n, which satisfies

|+⟩⊗n = α |ψ+⟩+ β |ψ−⟩

for some α, β ∈ C.
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Quantum counting

Running Phase Estimation, we get a state that is close to

α |ψ+⟩ |2̃θ⟩+ β |ψ−⟩ |−̃2θ⟩

Measuring the second register, we get an approximation of 2θ or

−2θ with some probability. Assuming θ < π/2, we can recover θ

from either.

Using t ancilla qubits, can estimate the phase to within 2−t .
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Quantum counting

The estimate of number of solutions is then

M̃ = N(sin θ̃)2.

How far off is this from the true number of solutions?
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Quantum counting

∣∣∣M̃ −M
∣∣∣ = N

∣∣∣ sin(θ + δ)2 − sin(θ)2
∣∣∣

= N
(
sin(θ + δ) + sin(θ)

)(
sin(θ + δ)− sin(θ)

)
≤ N(2| sin θ|+ δ)δ

= N
(
2

√
M

N
+ δ
)
δ = 2

√
NMδ + Nδ2
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Quantum counting

Thus the estimate satisfies∣∣∣M̃ −M
∣∣∣ ≤ 2

√
NMδ + Nδ2

Remember that δ ≤ 2−t . Then choosing t = log
(
1
ϵ

√
N
M

)
we get

(1− ϵ)M ≤ M̃ ≤ (1 + ϵ)M.

as desired.
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Complexity of quantum counting

We’re running phase estimation with t bits of precision, which

means we’re running G ,G 2,G 4, · · · ,G 2t which means

1 + 2 + 4 + · · ·+ 2t = 2t+1 − 1

queries to Of .
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Complexity of quantum counting

This is at most

O
(1
ϵ

√
N

M

)
queries – not much more than finding a single solution!

This also gives a way to find a solution without knowing M: first

get estimate M̃, and then run O(
√

N/M̃) iterations!
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Next time

Quantum complexity theory.
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	Quantum counting

