Week 9: Quantum algorithms for search and
counting

COMS 4281 (Fall 2023)



1. Worksheet and Quiz 5 out.



Recap of Grover search

Given query access to f : {0,1}" — {0, 1}, find a marked input x
such that f(x) = 1.

e Classical algorithms: Need at least ~ N queries to f.

e Grover's algorithm: ~ v/N queries suffices.

(Remember that N = 2")



Recap of Grover search

The algorithm:

1. Start with |+)®".

2. Run k = O(v/N) iterations of the Grover iterate

_Of

where R = 2|+) (+|®" — I is the Grover diffusion operator.



Analysis of Grover’s algorithm (attempt #2)

Let x* denote the unique marked input.

Important fact: The intermediate states of Grover's algorithm are
linear combinations of

|x*) and |A)

1
= 7= 2 ¥
XFEX*

We can prove this via induction.



Base case

Base case: initial state

5= =3 = T 1)+ = )



Inductive step

Assume that an intermediate state of Grover's algorithm has form

[¥) = alA) + B[x).

Claim: Or |¢) is linear combination of |A) | [x*).

Proof:

Or(a]B) + Bx)) = aOf |A) + BOf |x*)
— a|d) - BIx") .



Dirac notation interlude

When we write |+)(+|, we mean the outer product

()63 )



Dirac notation interlude

When we write |+)(+|, we mean the outer product
1 (1) 1 (1 1)= 111
V2 \1) 2 c2\1 1)
When we write |+)(+|®", we mean

[HHH @ [H)H @ - @ [H)(+H] = () (+)*" .

which is an n-qubit matrix of size 27 x 2",



Dirac notation interlude

When we write |[+)®", we mean the tensor product
+H e+ el

which is a 2”-dimensional column vector.



Dirac notation interlude

When we write |[+)®", we mean the tensor product
+H e+ el

which is a 2"-dimensional column vector. Similarly, (+|®" is a
2"-dimensional row vector.



Dirac notation interlude

When we write |[+)®", we mean the tensor product
+H e+ el

which is a 2"-dimensional column vector. Similarly, (+|®" is a
2"-dimensional row vector. The outer product

[4)E7 (4]

is a 2" x 2" matrix .



Dirac notation interlude

These are three different ways of writing the same thing!

[H)E7 (BT = () ()™ = [H)(+2"



Inductive step

Assume that an intermediate state of Grover's algorithm has form

[¥) = alA) + Bx*).

Claim: R |¢) is linear combination of |A) , [x*).

Proof:

Re[) = (2|+) (+®" = N [¥)
=2|H)%" ((+*" [¥) — ¥)
———

number!
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Inductive step

Assume that an intermediate state of Grover's algorithm has form

[¥) = alA) + Bx*).

Claim: R |¢) is linear combination of |A) , [x*).

Proof:

Re[) = (2|+) (+®" = N [¥)
=2|H)%" ((+*" [¥) — ¥)
———

number!

Recall |[+)®" is a linear combination of |A), [x*), and so is |¢) by

assumption.
Thus Ry |¢) is a linear combination of |A) | [x*).
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Analysis of Grover’s algorithm

Claim: After k Grover iterations, the state of the algorithm is
|1) = cos((2k + 1)0) |A) + sin((2k + 1)0) |x™)

where 0 = sin~1(y/1/N).
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Analysis of Grover’s algorithm

Claim: After k Grover iterations, the state of the algorithm is
|1) = cos((2k + 1)0) |A) + sin((2k + 1)0) |x™)

where 0 = sin~1(y/1/N).
We prove this by induction.

Base case: kK = 0. The initial state can be written as

[+)®" = \/Tm + \/E\xw -
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Analysis of Grover’s algorithm

Claim: After k Grover iterations, the state of the algorithm is
|1) = cos((2k + 1)0) |A) + sin((2k + 1)0) [x™)

where 6 = sin~1(1/1/N).
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Analysis of Grover’s algorithm

Claim: After k Grover iterations, the state of the algorithm is
|1) = cos((2k + 1)0) |A) + sin((2k + 1)0) [x™)

where 6 = sin~1(1/1/N).

Inductive step: Assume true for k > 1. Then one more Grover
iteration yields

RO¢ |¢) = cos((2k + 1)0)RO¢ |A) + sin((2k + 1)0)RO¢ |x™)
= cos((2k + 1)0)R |A) — sin((2k + 1)0)R |x™)
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Analysis of Grover’s algorithm

RIA) = (2[+)(+|°" = 1)|A)
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Analysis of Grover’s algorithm

RIA) = (2 +)(+*" = 1) |2)
=24 ((+°"12) ) - |2)
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Analysis of Grover’s algorithm

RIA) = (2 +)(+*" = 1) |2)
=24 ((+°"12) ) - |2)

=2/ M2 pyen
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Analysis of Grover’s algorithm

RIA) = (2 +)(+*" = 1) |2)
=2]4)°" ((+°" \A>) ~14)

r,w
T R
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Analysis of Grover’s algorithm

RIA) = (2 +)(+*" = 1) |2)
=2]4)°" ((+°" \A>) ~14)

r,w
T )
B N Q*/Fm
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Analysis of Grover’s algorithm

RIA) = (2 +)(+*" = 1) |2)
=2]4)°" ((+°" \A>) ~14)

r,w
B Fh)

=2+ L’XV 1\x>

- cos(20) IA) + sin(26) [x*) .
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Analysis of Grover’s algorithm

Similarly,

R |x*) =sin(20) |A) + cos(20) |x*) .
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Analysis of Grover’s algorithm

Similarly,

R |x*) =sin(20) |A) + cos(20) |x*) .

Thus we get

RO¢ 1) = cos((2k + 1)9)(cos(29) IA) + sin(26) |x*) )

— sin((2k + 1)0)<sin(20) IA) + cos(26) [x*) )

as desired.
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Analysis of Grover’s algorithm

Similarly,

R |x*) =sin(20) |A) + cos(20) |x*) .

Thus we get

RO [1) = cos((2k + 1)9) ((cos(26) |A) + sin(20) [x”) )
— sin((2k + 1)0)<sin(20) IA) + cos(26) [x*) )
= cos((2k + 3)0) |A) + sin((2k + 3)0) |x™)

as desired.
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Multiple solutions

If there are M > 1 solutions, then can find a solution with

O(\/N/M) queries.

ii5)



Multiple solutions

If there are M > 1 solutions, then can find a solution with

O(\/N/M) queries.

The intermediate states of the algorithm are in the span of
o |l = ﬁ > x:f(x)=1 |X). uniform superposition over all

solutions

o |A) = \/ﬁ > x:F(x)=0 |X), uniform superposition over all

non-solutions

In the end, the output is a random solution.

ii5)



Multiple solutions

What if you wanted to output all solutions?

There is O(v NM) query solution:

1. Use \/% queries to find the first solution xi.
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Multiple solutions

What if you wanted to output all solutions?

There is O(v NM) query solution:

1. Use \/% queries to find the first solution xi.

2. Run Grover search with updated oracle f; where x; is
excluded. This finds solution x» with \/% queries.
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Multiple solutions

What if you wanted to output all solutions?

There is O(v NM) query solution:

1.
2.

Use \/% queries to find the first solution xi.

Run Grover search with updated oracle f; where xj is
excluded. This finds solution x» with \/% queries.

Update the oracle to exclude x>. Find another solution x3, etc.
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Multiple solutions

The total number of queries is

\/Nﬂ/ A +\/ﬂ
MV M-1 1
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Multiple solutions

The total number of queries is

\/N+\/L+ +\/N
M M—-1 1
pa oy Y /M—l\/T
:Z —< dx
0 M—_j 0 M — x

]j=

< O(VNM)
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Quantum counting

What if you wanted to count the number of solutions, not just
find them?

Given query access to f : {0,1}” — {0,1}, output an estimate M
of the number of marked inputs M, such that

(1-eM <M< (14e)M.
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Quantum counting

What if you wanted to count the number of solutions, not just
find them?

Given query access to f : {0,1}” — {0,1}, output an estimate M
of the number of marked inputs M, such that

(1-eM <M< (14e)M.

Solution: Grover search + phase estimation.
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Quantum counting




Quantum counting

Recall that for Phase Estimation, we need:
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Quantum counting

Recall that for Phase Estimation, we need:
1. (Controlled) unitary U (and its powers)
2. An eigenvector of U with eigenvalue e’

We output an estimate 6 for 6.
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Quantum counting

Unitary: we'll use the Grover iterate G = RO .
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Quantum counting

Unitary: we'll use the Grover iterate G = RO .

On the 2-dimensional subspace span{|l') ,|A)}, this is the rotation

matrix

cos26 —sin20
sin20  cos 20

where sinf = \/W The eigenvalues of this are e’ and e=?.
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Quantum counting

The nontrivial eigenvectors of G are:

i) = <5 (IN+71)).
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Quantum counting

The nontrivial eigenvectors of G are:

i) = <5 (IN+71)).

n

We run Phase Estimation with the state [+)®”, which satisfies

)" = afir) + B |y-)

for some «, 8 € C.
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Quantum counting

Running Phase Estimation, we get a state that is close to

a i) [28) + B ) |—26)

Measuring the second register, we get an approximation of 26 or
—26 with some probability. Assuming 6 < /2, we can recover 6
from either.
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Quantum counting

Running Phase Estimation, we get a state that is close to

a i) [28) + B ) |—26)

Measuring the second register, we get an approximation of 26 or
—26 with some probability. Assuming 6 < /2, we can recover 6
from either.

Using t ancilla qubits, can estimate the phase to within 27t
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Quantum counting

The estimate of number of solutions is then

M = N(sin )>.

How far off is this from the true number of solutions?
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Quantum counting

‘/\77 - M‘ = N‘ sin(f + 6)? —sin(9)2’
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Quantum counting

‘/\77 - M‘ = N‘ sin(f + 6)? —sin(9)2’

- N(sin(9 +6)+ sin(e)) <sin(0 +6) — sin(9)>
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Quantum counting

‘/\77 - M‘ = N‘ sin(f + 6)? —sin(9)2’
:N(gma+&+smwn<gma+@_gmw»

< N(2|sin 6] + 8)6
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Quantum counting

‘/\77 - M‘ = N‘ sin(f + 6)? —sin(9)2’
_ N(sin(9 +6)+ sin(e)) <sin(0 +6)— sin(9)>

< N(2|sin 6] + 8)6

—N(2m+5>6_2\/W6+N52
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Quantum counting

Thus the estimate satisfies

W _ M’ < 2V/NM§ + N§?
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Quantum counting

Thus the estimate satisfies

W _ M’ < 2V/NM§ + N§?

Remember that § < 27t. Then choosing t = log <%1 / %) we get

1-eM <M< (14 e)M.

as desired.
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Complexity of quantum counting

We're running phase estimation with t bits of precision, which
means we're running G, G2, G*,- .- | G2 which means

14+24+4+---+2t =2t 1

queries to Or.
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Complexity of quantum counting

This is at most

o(:\ )

queries — not much more than finding a single solution!
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Complexity of quantum counting

This is at most

o(:\ )

queries — not much more than finding a single solution!

This also gives a way to find a solution without knowing M: first
get estimate M, and then run O(y/N/M) iterations!

27



Quantum complexity theory.
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	Quantum counting

