Week 9: Quantum algorithms for search and counting

COMS 4281 (Fall 2024)

- 1. Practice worksheet, quiz out tonight.
- 2. Problem Set 2 out next week, due sometime before Thanksgiving.

So far, we have seen two examples of exponential quantum speedups:

- Simons Algorithm
- Order Finding/Factoring

These speedups are for highly structured problems.

So far, we have seen two examples of exponential quantum speedups:

- Simons Algorithm
- Order Finding/Factoring

These speedups are for highly structured problems.

They all use a version of the Quantum Fourier Transform.

Given: Oracle access to a black-box function $f : \{0, 1\}^n \to \{0, 1\}$ **Goal**: Output a **marked input** x such that f(x) = 1, if one exists. **Given**: Oracle access to a black-box function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ **Goal**: Output a **marked input** x such that f(x) = 1, if one exists.

Classical algorithms need $\Omega(2^n)$ queries to f to find a marked input.

Grover's Algorithm can find a marked input with $O(\sqrt{2^n})$ queries to f.

Presented by Lov Grover in 1997 in paper called "A fast quantum mechanical algorithm for database search".

This achieves a **quadratic speedup**. Not as impressive as exponential speedup, but still interesting!

1 billion seconds \approx 31 years

 $\sqrt{1 \text{ billion}}$ seconds \approx 9 hours.

Phase versus XOR oracles

The Simons and Deutsch algorithms called the oracle via the $\ensuremath{\textbf{XOR}}$ oracle

$$U_f \ket{x,b} = \ket{x,b\oplus f(x)}$$
 .

The Simons and Deutsch algorithms called the oracle via the **XOR** oracle

$$U_f \ket{x,b} = \ket{x,b \oplus f(x)}$$
 .

In Grover's algorithm the oracle is accessed via the Phase oracle

$$O_f |x\rangle = (-1)^{f(x)} |x\rangle.$$

Note that O_f acts on n **qubits**.

The Phase Oracle can be simulated by one query to the XOR oracle, and XOR oracle can be simulated with one query to the Phase Oracle.

(do on board)

Grover's algorithm

Grover's algorithm

For simplicity, let's assume that there exists **exactly one** marked input.

The circuit for Grover's algorithm:

Grover's algorithm

For simplicity, let's assume that there exists **exactly one** marked input.

The circuit for Grover's algorithm:

where

is the Grover iterate.

The state of Grover's algorithm before the Grover iterates is

$$|+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle.$$

The operator *R* is the *n*-qubit **Grover diffusion operator**

$$R = 2 \left| + \right\rangle \left\langle + \right|^{\otimes n} - I$$

Exercise: check that this is unitary!

Let x^* denote the unique marked input.

Important fact: The intermediate states of Grover's algorithm are linear combinations of

$$|x^*
angle \hspace{0.5cm}$$
 and $|\Delta
angle = rac{1}{\sqrt{2^n-1}}\sum_{x
eq x^*}|x
angle$

We can prove this via induction.

Base case: initial state

$$|+
angle^{\otimes n} = rac{1}{\sqrt{2^n}}\sum_{x}|x
angle = \sqrt{rac{2^n-1}{2^n}}\,|\Delta
angle + rac{1}{\sqrt{2^n}}\,|x^*
angle$$

Assume that an intermediate state of Grover's algorithm has form $|\psi\rangle = \alpha |\Delta\rangle + \beta |x^*\rangle.$

Claim: $O_f |\psi\rangle$ is linear combination $|\Delta\rangle$, $|x^*\rangle$. **Claim**: $R |\psi\rangle$ is linear combination of $|\Delta\rangle$, $|x^*\rangle$. (prove Claims on board)

Success probability curve

The probability of finding a marked input when measuring the state after k Grover iterations. Running Grover's algorithm for longer can reduce your success probability!

Multiple solutions

What happens when there are M > 1 solutions to f(x) = 1? We can use Grover's algorithm as before, but the success probability curve changes:

If the number of solutions M is **known**, then running $O(\sqrt{N/M})$ iterations will yield a solution with high probability.

If the number of solutions M is **known**, then running $O(\sqrt{N/M})$ iterations will yield a solution with high probability.

If M is **unknown**, by picking a random number T between 1 and \sqrt{N} and stopping after T iterations, can find a solution with at least 50% probability. Repeating this O(1) times yields a solution with high probability.

If *M* is **unknown**, then there is a more sophisticated solution to find a solution with $O(\sqrt{N/M})$ queries in expectation.

Idea: try Grover's algorithm with different number of iterations:

 $T_0, \lambda T_0, \lambda^2 T_0, \ldots$

where T_0 is some constant and $1 < \lambda < 4/3$.

Contrary to Grover's original title, "database search" is probably not a good application of Grover's algorithm.

- Contrary to Grover's original title, "database search" is probably not a good application of Grover's algorithm.
- For database search, the oracle f(x) would correspond to something like "If Person x lives in New York City, has blood type O and likes Thai food, output 1" where $1 \le x \le N$.
- Although Grover's algorithm makes $O(\sqrt{N})$ queries to f, computing f(x) itself may have complexity $N = 2^n$.

A much better use is when we're trying to solve an abstract search problem where f(x) can be computed much less than $N = 2^n$ time. **Example**: Finding satisfying assignments to SAT formulas. This is an NP complete problem. Believed best classical algorithms takes 2^n time. A much better use is when we're trying to solve an abstract search problem where f(x) can be computed much less than $N = 2^n$ time. **Example**: Finding satisfying assignments to SAT formulas.

This is an NP complete problem. Believed best classical algorithms takes 2^n time.

With Grover, can solve it in $O(\sqrt{2^n}) \cdot \operatorname{poly}(n)$ time on a quantum computer.

Amplitude amplification and quantum counting.