Week 9: Quantum algorithms for search and counting

COMS 4281 (Fall 2024)

- 1. Practice worksheet, quiz out tonight.
- 2. Problem Set 2 out next week, due sometime before Thanksgiving.

So far, we have seen two examples of exponential quantum speedups:

- Simons Algorithm
- Order Finding/Factoring

These speedups are for **highly structured problems**.

So far, we have seen two examples of exponential quantum speedups:

- Simons Algorithm
- Order Finding/Factoring

These speedups are for **highly structured problems**.

They all use a version of the Quantum Fourier Transform.

Given: Oracle access to a black-box function $f: \{0,1\}^n \rightarrow \{0,1\}$ **Goal:** Output a **marked input** x such that $f(x) = 1$, if one exists.

Given: Oracle access to a black-box function $f: \{0,1\}^n \rightarrow \{0,1\}$ **Goal:** Output a **marked input** x such that $f(x) = 1$, if one exists.

Classical algorithms need $\Omega(2^n)$ queries to f to find a marked input.

Grover's Algorithm can find a marked input with $O(\alpha)$ √ (2^n) queries to f .

Presented by Lov Grover in 1997 in paper called "A fast quantum mechanical algorithm for database search".

This achieves a **quadratic speedup**. Not as impressive as exponential speedup, but still interesting!

1 billion seconds \approx 31 years

√ 1 billion seconds \approx 9 hours.

[Phase versus XOR oracles](#page-8-0)

The Simons and Deutsch algorithms called the oracle via the **XOR** oracle

$$
U_f |x, b\rangle = |x, b \oplus f(x)\rangle .
$$

The Simons and Deutsch algorithms called the oracle via the **XOR** oracle

$$
U_f |x, b\rangle = |x, b \oplus f(x)\rangle .
$$

In Grover's algorithm the oracle is accessed via the **Phase oracle**

$$
O_f\ket{x}=(-1)^{f(x)}\ket{x}.
$$

Note that O_f acts on *n* qubits.

The Phase Oracle can be simulated by one query to the XOR oracle, and XOR oracle can be simulated with one query to the Phase Oracle.

(do on board)

[Grover's algorithm](#page-12-0)

Grover's algorithm

For simplicity, let's assume that there exists **exactly one** marked input.

The circuit for Grover's algorithm:

$$
|0\rangle^{\otimes n}
$$
 $\left|\underbrace{\overline{H^{\otimes n}}}\right| \left|\underbrace{\overline{O_f}}\right| \left|\overline{R}\right|$ \cdots $\mathcal{O}(\sqrt{N})$ times \cdots $\left|\underbrace{\overline{O_f}}\right| \left|\overline{R}\right|$

Grover's algorithm

For simplicity, let's assume that there exists **exactly one** marked input.

The circuit for Grover's algorithm:

$$
|0\rangle^{\otimes n} \leftarrow \boxed{H^{\otimes n}} \left[\begin{array}{c|c} \overbrace{ \mathcal{O}_f} & \overbrace{R} \\ \hline \end{array}\right] \cdots \quad \mathcal{O}(\sqrt{N}) \; \text{times} \quad \cdots \left[\begin{array}{c|c} \overbrace{ \mathcal{O}_f} & \overbrace{R} \\ \hline \end{array}\right] \left[\begin{array}{c|c} \overbrace{R} & \overbrace{R} \\ \hline \end{array}\right]
$$

where

is the **Grover iterate**.

The state of Grover's algorithm before the Grover iterates is

$$
|+\rangle^{\otimes n}=\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle\,.
$$

The operator R is the *n*-qubit **Grover diffusion operator**

$$
R=2\ket{+}\bra{+}^{\otimes n}-I
$$

Exercise: check that this is unitary!

Let x^* denote the unique marked input.

Important fact: The intermediate states of Grover's algorithm are linear combinations of

$$
|x^*\rangle \qquad \text{and} \qquad |\Delta\rangle = \frac{1}{\sqrt{2^n-1}}\sum_{x\neq x^*} |x\rangle
$$

We can prove this via induction.

Base case: initial state

$$
\left|+\right\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{\mathsf{x}} \left| \mathsf{x} \right\rangle = \sqrt{\frac{2^n-1}{2^n}} \left| \Delta \right\rangle + \frac{1}{\sqrt{2^n}} \left| \mathsf{x}^* \right\rangle
$$

Assume that an intermediate state of Grover's algorithm has form $|\psi\rangle = \alpha |\Delta\rangle + \beta |x^*\rangle.$

Claim: $O_f |\psi\rangle$ is linear combination $|\Delta\rangle, |x^*\rangle$. **Claim**: $R|\psi\rangle$ is linear combination of $|\Delta\rangle$, $|x^*\rangle$. (prove Claims on board)

Success probability curve

The probability of finding a marked input when measuring the state after k Grover iterations. Running Grover's algorithm for longer can reduce your success probability!

Multiple solutions

What happens when there are $M > 1$ solutions to $f(x) = 1$? We can use Grover's algorithm as before, but the success probability curve changes:

If the number of solutions M is known, then running $O(\sqrt{N/M})$ iterations will yield a solution with high probability.

If the number of solutions M is known, then running $O(\sqrt{N/M})$ iterations will yield a solution with high probability.

If M is unknown, by picking a random number τ between 1 and \sqrt{N} and stopping after T iterations, can find a solution with at least 50% probability. Repeating this $O(1)$ times yields a solution with high probability.

If M is **unknown**, then there is a more sophisticated solution to find a solution with $O(\sqrt{N/M})$ queries in expectation.

Idea: try Grover's algorithm with different number of iterations:

 $T_0, \lambda T_0, \lambda^2 T_0, \ldots$

where T_0 is some constant and $1 < \lambda < 4/3$.

Contrary to Grover's original title, "database search" is probably not a good application of Grover's algorithm.

- Contrary to Grover's original title, "database search" is probably not a good application of Grover's algorithm.
- For database search, the oracle $f(x)$ would correspond to something like "If Person x lives in New York City, has blood type O and likes Thai food, output 1" where $1 \le x \le N$.
- Although Grover's algorithm makes $O(\sqrt{2\pi})$ √ N) queries to f , computing $f(x)$ itself may have complexity $N = 2^n$.

A much better use is when we're trying to solve an abstract search problem where $f(x)$ can be computed much less than $N = 2^n$ time. **Example:** Finding satisfying assignments to SAT formulas. This is an NP complete problem. Believed best classical algorithms takes 2^n time.

A much better use is when we're trying to solve an abstract search problem where $f(x)$ can be computed much less than $N = 2^n$ time. **Example:** Finding satisfying assignments to SAT formulas. This is an NP complete problem. Believed best classical algorithms takes 2^n time.

With Grover, can solve it in $O(\sqrt{2})$ √ $\overline{{2^n}})\cdot \mathrm{poly}(n)$ time on a quantum computer.

Amplitude amplification and quantum counting.