
Week 7: Shor’s Algorithm

COMS 4281 (Fall 2024)

Admin

1. Midterm, Monday October 21.

• Two exam rooms: Havemeyer 209 or Hamilton 703.

• Plan on arriving at least 10 minutes early

• If you require additional exam accommodations and have

documentation from student services, please contact me ASAP.

• Exam skeleton will be released in a day or two.

1

Upcoming event

Today at 11:45 in Mudd 829: Applied Physics Colloquium by IBM

Quantum.

Title: The Future of IBM Quantum: Pioneering the Next Era of

Computing

2

Last time

Phase Estimation Algorithm (which uses DFT as subroutine).

Goal of PEA:

• Ability to run controlled versions of U,U2,U4, . . . ,U2j , . . .

• An eigenstate |ψ⟩ where U |ψ⟩ = e2πiθ |ψ⟩,

estimate θ.

3

Last time

Public key cryptography

RSA cryptosystem

4

Factoring problem

Input: Positive integer N.

Output: Prime factorization of N as pa11 pa22 · · · .

The prime factorization of N is unique by the Fundamental

Theorem of Arithmetic.

To find a factorization of N, it suffices to be able to find some

nontrivial divisor of N.

5

Factoring problem

Input: Positive integer N.

Output: Prime factorization of N as pa11 pa22 · · · .

The prime factorization of N is unique by the Fundamental

Theorem of Arithmetic.

To find a factorization of N, it suffices to be able to find some

nontrivial divisor of N.

5

Factoring problem

It is widely believed that Factoring is hard for classical computers.

The best classical algorithm, known as the General Number Field

Sieve, takes time roughly

exp
(
O(logN)1/3

)
.

This is essentially exponential in the number of digits of N.

6

Shor’s algorithm

A quantum algorithm to solve Factoring in poly(logN) steps.

Discovered by Peter Shor in 1993. He was inspired by Simon’s

Algorithm.

Shor’s Algorithm is also a hybrid classical-quantum algorithm.

1. Classical part: reduce the factoring problem to order

finding.

2. Quantum part: solve order finding.

7

Shor’s algorithm

A quantum algorithm to solve Factoring in poly(logN) steps.

Discovered by Peter Shor in 1993. He was inspired by Simon’s

Algorithm.

Shor’s Algorithm is also a hybrid classical-quantum algorithm.

1. Classical part: reduce the factoring problem to order

finding.

2. Quantum part: solve order finding.

7

Order Finding

Input: given positive integers N, x such that

1. 1 ≤ x < N

2. gcd(N, x) = 1 (i.e. they do not have any nontrivial factors in

common)

Output: find smallest integer r such that x r = 1 mod N (called

the order of x mod N).

8

Order Finding

Input: given positive integers N, x such that

1. 1 ≤ x < N

2. gcd(N, x) = 1 (i.e. they do not have any nontrivial factors in

common)

Output: find smallest integer r such that x r = 1 mod N (called

the order of x mod N).

8

Quantum algorithm for Order

Finding

Quantum Algorithm for Order Finding

Input: Integers N and 1 ≤ x < N coprime to N.

Order Finding algorithm uses Phase Estimation Algorithm with

respect to the modular multiplication unitary Ux , defined as

Ux |y⟩ = |xy mod N⟩

where 0 ≤ y < N.

9

Modular multiplication unitary

Ux |y⟩ = |xy mod N⟩

Fact 1: This map is unitary.

Fact 2: Ux is computable by a quantum circuit with poly(n) gates.

10

Modular multiplication unitary

Ux |y⟩ = |xy mod N⟩

Fact 1: This map is unitary.

Fact 2: Ux is computable by a quantum circuit with poly(n) gates.

10

Modular multiplication unitary

Subtlety: it’s easy to implement a quantum circuit for the map

V |x , y , 0⟩ = |x , y , xy mod N⟩ .

This is different from Ux . The proof that Ux is unitary uses the

fact that gcd(x ,N) = 1.

11

Modular multiplication unitary

Subtlety: it’s easy to implement a quantum circuit for the map

V |x , y , 0⟩ = |x , y , xy mod N⟩ .

This is different from Ux . The proof that Ux is unitary uses the

fact that gcd(x ,N) = 1.

11

Modular multiplication unitary, repeated

U2j
x |y⟩ = |x2j y mod N⟩

Fact: This map is unitary, and is computable by a quantum circuit

with poly(n, j) gates.

This uses fact that one can ”shortcut” compute x2
j
modulo N

without doing 2j multiplications, by repeatedly squaring, reducing

mod N, squaring, reducing mod N, etc...

x → x2 → x2 mod N → (x2 mod N)2 → x4 mod N → · · ·

12

Modular multiplication unitary, repeated

U2j
x |y⟩ = |x2j y mod N⟩

Fact: This map is unitary, and is computable by a quantum circuit

with poly(n, j) gates.

This uses fact that one can ”shortcut” compute x2
j
modulo N

without doing 2j multiplications, by repeatedly squaring, reducing

mod N, squaring, reducing mod N, etc...

x → x2 → x2 mod N → (x2 mod N)2 → x4 mod N → · · ·

12

Remember that we’re trying to use Phase Estimation Algorithm.

We have efficient way to implement controlled U
2j
x operations.

We just need an eigenvector of Ux .

13

Remember that we’re trying to use Phase Estimation Algorithm.

We have efficient way to implement controlled U
2j
x operations.

We just need an eigenvector of Ux .

13

Eigenvectors of Ux

Let r denote the order of x (i.e. x r = 1 mod N). Then for all

0 ≤ s < r , define the state

|vs⟩ =
1√
r

r−1∑
k=0

ω−sk
r |xk mod N⟩

Claim: Ux |vs⟩ = exp
(
2πi sr

)
|vs⟩.

14

Eigenvectors of Ux

Let r denote the order of x (i.e. x r = 1 mod N). Then for all

0 ≤ s < r , define the state

|vs⟩ =
1√
r

r−1∑
k=0

ω−sk
r |xk mod N⟩

Claim: Ux |vs⟩ = exp
(
2πi sr

)
|vs⟩.

14

Phase Estimation Algorithm

Given:

1. Ability to run controlled versions of U,U2,U4, . . . ,U2j , . . .

2. An eigenstate |ψ⟩ where U |ψ⟩ = e2πiθ |ψ⟩

Using O(t) qubits of ancilla, PEA outputs an estimate θ̃ satisfying

|θ̃ − θ| ≤ 2−t

with high probability. The algorithm runs in poly(t) time.

15

Quantum Algorithm for Order Finding

Input: Integers N, x where 2n−1 ≤ N < 2n and 1 ≤ x < N

coprime to N.

Suppose we run Phase Estimation algorithm with O(n) ancilla

qubits, with controlled-U2j
x operations and an eigenvector |vs⟩ for

some 0 ≤ s < r .

Complexity: poly(n) (including complexity of controlled-U
2j
x).

Output: estimate θ̃s that is within 2−3n ≤ 1/N3 of s/r .

16

Quantum Algorithm for Order Finding

Input: Integers N, x where 2n−1 ≤ N < 2n and 1 ≤ x < N

coprime to N.

Suppose we run Phase Estimation algorithm with O(n) ancilla

qubits, with controlled-U2j
x operations and an eigenvector |vs⟩ for

some 0 ≤ s < r .

Complexity: poly(n) (including complexity of controlled-U
2j
x).

Output: estimate θ̃s that is within 2−3n ≤ 1/N3 of s/r .

16

Remember that the goal is to recover the integer r , the order of x .

Issue 1: The algorithm outputs something that looks like

θ̃ = 0.011110110011 . . .

We don’t know s, r . How do find the s/r fraction corresponding to

this?

Issue 2: How do we get our hands on the eigenvector |vs⟩?

17

Remember that the goal is to recover the integer r , the order of x .

Issue 1: The algorithm outputs something that looks like

θ̃ = 0.011110110011 . . .

We don’t know s, r . How do find the s/r fraction corresponding to

this?

Issue 2: How do we get our hands on the eigenvector |vs⟩?

17

Remember that the goal is to recover the integer r , the order of x .

Issue 1: The algorithm outputs something that looks like

θ̃ = 0.011110110011 . . .

We don’t know s, r . How do find the s/r fraction corresponding to

this?

Issue 2: How do we get our hands on the eigenvector |vs⟩?

17

Getting the eigenvectors

We can solve Issue 2 by running Phase Estimation on the

superposition

1√
r

r−1∑
s=0

|vs⟩

While it’s hard to construct |vs⟩ individually, this superposition is

easy to prepare, because this is equal to the standard basis state

|1⟩. (exercise!)

18

Getting the eigenvectors

We can solve Issue 2 by running Phase Estimation on the

superposition

1√
r

r−1∑
s=0

|vs⟩

While it’s hard to construct |vs⟩ individually, this superposition is

easy to prepare, because this is equal to the standard basis state

|1⟩. (exercise!)

18

After running PEA on input |1⟩, the output will be approximately

≈ 1√
r

r−1∑
s=0

|vs⟩ ⊗ |θ̃s⟩

where |θ̃s − s/r | ≤ 2−3n ≤ 1/N3.

Measuring the second register yields |θ̃s⟩ for a uniformly random

0 ≤ s < r .

19

After running PEA on input |1⟩, the output will be approximately

≈ 1√
r

r−1∑
s=0

|vs⟩ ⊗ |θ̃s⟩

where |θ̃s − s/r | ≤ 2−3n ≤ 1/N3.

Measuring the second register yields |θ̃s⟩ for a uniformly random

0 ≤ s < r .

19

Imagine that θ̃s was actually s/r exactly, and furthermore s was

coprime to r .

Then we can recover s, r from θ̃s .

Example: Suppose θ̃s = 0.358. Then clearly

θ̃s =
358

1000
=

179

500
.

This is equal to s/r . But since s/r is already in most reduced

form, it must be s = 179 and r = 500.

20

Imagine that θ̃s was actually s/r exactly, and furthermore s was

coprime to r .

Then we can recover s, r from θ̃s .

Example: Suppose θ̃s = 0.358. Then clearly

θ̃s =
358

1000
=

179

500
.

This is equal to s/r . But since s/r is already in most reduced

form, it must be s = 179 and r = 500.

20

Imagine that θ̃s was actually s/r exactly, and furthermore s was

coprime to r .

Then we can recover s, r from θ̃s .

Example: Suppose θ̃s = 0.358. Then clearly

θ̃s =
358

1000
=

179

500
.

This is equal to s/r . But since s/r is already in most reduced

form, it must be s = 179 and r = 500.

20

However θ̃s is not s/r exactly.

We solve Issue 1 by the Continued Fractions Algorithm.

21

Continued fractions algorithm

This is a classical algorithm from number theory.

Let φ be a real number and s/r a fraction such that

∣∣∣φ− s

r

∣∣∣ ≤ 1

2r2
.

Then the Continued Fractions Algorithm, given input φ, will

output the reduced form of s/r in time poly(log r).

22

We can apply Continued Fractions to our setting because we have

∣∣∣θ̃s − s

r

∣∣∣ ≤ 1

N3

which is less than 1
2r2

. So Continued Fractions outputs s/r in

reduced form. If s is coprime to r , then we get s, r exactly.

23

Summary of Order Finding algorithm

1. Run Phase Estimation with the unitary controlled-Ux (and its

powers) and input state |1⟩ (which is uniform superposition of

eigenvectors).

2. Get random estimate θ̃.

3. Use Continued Fractions algorithm on θ̃ to obtain reduced

form a/b of s/r .

4. Check whether xb = 1 mod N. If so, then b = r . Otherwise,

go back to Step 1.

Each loop succeeds with probability 1/ log log r , so we only have to

repeat a few times.

24

Summary of Order Finding algorithm

1. Run Phase Estimation with the unitary controlled-Ux (and its

powers) and input state |1⟩ (which is uniform superposition of

eigenvectors).

2. Get random estimate θ̃.

3. Use Continued Fractions algorithm on θ̃ to obtain reduced

form a/b of s/r .

4. Check whether xb = 1 mod N. If so, then b = r . Otherwise,

go back to Step 1.

Each loop succeeds with probability 1/ log log r , so we only have to

repeat a few times.

24

Summary of Order Finding algorithm

1. Run Phase Estimation with the unitary controlled-Ux (and its

powers) and input state |1⟩ (which is uniform superposition of

eigenvectors).

2. Get random estimate θ̃.

3. Use Continued Fractions algorithm on θ̃ to obtain reduced

form a/b of s/r .

4. Check whether xb = 1 mod N. If so, then b = r . Otherwise,

go back to Step 1.

Each loop succeeds with probability 1/ log log r , so we only have to

repeat a few times.

24

Summary of Order Finding algorithm

1. Run Phase Estimation with the unitary controlled-Ux (and its

powers) and input state |1⟩ (which is uniform superposition of

eigenvectors).

2. Get random estimate θ̃.

3. Use Continued Fractions algorithm on θ̃ to obtain reduced

form a/b of s/r .

4. Check whether xb = 1 mod N. If so, then b = r . Otherwise,

go back to Step 1.

Each loop succeeds with probability 1/ log log r , so we only have to

repeat a few times.

24

Summary of Order Finding algorithm

1. Run Phase Estimation with the unitary controlled-Ux (and its

powers) and input state |1⟩ (which is uniform superposition of

eigenvectors).

2. Get random estimate θ̃.

3. Use Continued Fractions algorithm on θ̃ to obtain reduced

form a/b of s/r .

4. Check whether xb = 1 mod N. If so, then b = r . Otherwise,

go back to Step 1.

Each loop succeeds with probability 1/ log log r , so we only have to

repeat a few times.

24

Summary of Factoring via Quantum Computers

1. If we can factor, we can break RSA.

2. If we can solve Order Finding, we can factor integers.

3. By running Phase Estimation with Modular Multiplication

unitary a few times, we can get noisy estimates of s/r .

4. We can “decode” these estimates by using Continued

Fractions algorithm.

25

Summary of Factoring via Quantum Computers

1. If we can factor, we can break RSA.

2. If we can solve Order Finding, we can factor integers.

3. By running Phase Estimation with Modular Multiplication

unitary a few times, we can get noisy estimates of s/r .

4. We can “decode” these estimates by using Continued

Fractions algorithm.

25

Summary of Factoring via Quantum Computers

1. If we can factor, we can break RSA.

2. If we can solve Order Finding, we can factor integers.

3. By running Phase Estimation with Modular Multiplication

unitary a few times, we can get noisy estimates of s/r .

4. We can “decode” these estimates by using Continued

Fractions algorithm.

25

Summary of Factoring via Quantum Computers

1. If we can factor, we can break RSA.

2. If we can solve Order Finding, we can factor integers.

3. By running Phase Estimation with Modular Multiplication

unitary a few times, we can get noisy estimates of s/r .

4. We can “decode” these estimates by using Continued

Fractions algorithm.

25

How far away is Shor’s factoring algorithm?

Gidney, Ekera 2018: given current methods for error correction,

we would need

1. 20 million noisy qubits

2. 8 hours

to factor a 2048-bit RSA integer.

IBM Roadmap: 1 million qubits by 2030.

26

How far away is Shor’s factoring algorithm?

Gidney, Ekera 2018: given current methods for error correction,

we would need

1. 20 million noisy qubits

2. 8 hours

to factor a 2048-bit RSA integer.

IBM Roadmap: 1 million qubits by 2030.

26

What will replace RSA?

US National Institute for Standards and Technology (NIST) just

concluded a multiyear competition to find postquantum

cryptosystems to replace RSA. The winners are...

1. CRYSTALS-Kyber

2. CRYSTALS-Dilithium

3. FALCON

4. SPHINCS+

Kyber is for encryption, and the last three are for digital signatures.

27

What will replace RSA?

US National Institute for Standards and Technology (NIST) just

concluded a multiyear competition to find postquantum

cryptosystems to replace RSA. The winners are...

1. CRYSTALS-Kyber

2. CRYSTALS-Dilithium

3. FALCON

4. SPHINCS+

Kyber is for encryption, and the last three are for digital signatures.

27

Post-quantum cryptography from lattices

Kyber, Dilithium, and Falcon are all based on lattice problems,

where the goal is to find short vectors in a high-dimensional lattice.

It is believed that these problems cannot be quickly solved by

quantum computers.
28

Post-quantum cryptography from lattices

It is an important research problem to find better evidence that

lattice problems are hard for quantum computers.

But there’s always the possibility that someone can find a fast

quantum algorithm for them...

It will take time to build confidence in these new cryptosystems.

29

	Quantum algorithm for Order Finding

