
Week 10: Quantum complexity theory

COMS 4281 (Fall 2024)

Quantum algorithms, so far

• Simons Algorithm

• Order Finding/Factoring, Phase Estimation

• Grover Search, Quantum Counting, Amplitude Amplification

Nearly 30 years after Shor’s and Grover’s algorithm, we still only

have a very murky idea of when quantum computers are better

than classical computers.

The formal study of this question is the focus of quantum

complexity theory.

1

Computational complexity theory

Study of various computational resources needed to solve

computational problems.

• Time

• Space

• Randomness

• Interaction

• Non-determinism

• Quantumness

• ...

2

Computational complexity theory

Main questions:

1. How do these computational resources relate to each other?

2. What are the tradeoffs?

3. Does non-determinism help speed up computations (P vs NP)

4. If a problem can be solved using a small amount of memory,

can it also be solved using a small amount of time?

5. Can quantum computers efficiently solve problems that are

hard for classical computers?

3

Complexity classes

Complexity classes are used to classify and compare

computational problems according to the computational resources

needed to solve them.

The focus is on decision problems, which are computational

problems where for each input there is a binary output (“yes” or

“no”).

Example: Graph connectivity problem

• Input: graph G

• Output: is G connected?

4

Some complexity classes

P - polynomial time

Decision problems that can be solved by deterministic algorithms

running in time O(nc) where n is the length of the input.

Traditionally considered the notion of efficient classical

computation in theoretical computer science.

Examples: graph connectivity, determining if a number is prime,

computing shortest paths in a graph

5

NP - nondeterministic polynomial time

Decision problems whose solutions can be verified in polynomial

time. If the answer to the input is “yes”, then there exists a

solution/certificate/proof that is efficiently checkable.

Examples: traveling salesman person problem, boolean

satisfiability, factoring.

Most optimization/search problems are in NP. Many are

NP-complete, meaning they are amongst the hardest NP

problems.

6

BPP - bounded-error probabilistic polynomial time

Decision problems that can be solved by a randomized,

polynomial time algorithm.

The correct answer must be obtained with high probability (say

99%).

Examples: any problem in P, polynomial identity testing

It is conjectured that P = BPP (i.e. randomization does not help

for efficient computation).

7

PSPACE - polynomial space

Decision problems that can be solved by a deterministic algorithm

that uses O(nc) bits of space where n is the input length.

Captures the notion of problems that can be solved using a small

amount of memory.

Examples: all of P, NP, BPP. Generalized tic-tac-toe, Super Mario

Bros.

8

EXP - exponential time

Decision problems that can be solved by a deterministic algorithm

that runs in O(2n
c
) time.

Examples: all of PSPACE, generalized Chess.

9

Classical complexity classes

The only separation we know is P ̸= EXP.

10

BQP - bounded-error quantum polynomial time

Decision problems that can be solved by a quantum algorithm

(i.e. a quantum circuit) of O(nc) size with high probability.

Captures the notion of efficient quantum computation.

Examples: all of P, BPP, factoring, simulating quantum physics.

11

Where does BQP live?

12

The central questions

BQP ⊆ BPP?

In other words, is there an efficient classical simulation of quantum

computation?

NP ⊆ BQP?

Can quantum computers be used to solve hard optimization

problems like SAT or Traveling Salesperson Problem?

What are classical upper bounds on BQP?

What resources does a classical computer need in order to simulate

quantum computations?

13

Acceptance probability of quantum circuit

Definition. The acceptance probability of a quantum circuit C

on input |ψ⟩ is the probability that measuring the first qubit of

C |ψ⟩ yields |1⟩ (i.e. accepts).

14

APPROX-Q-CIRCUIT

Define the decision problem APPROX-Q-CIRCUIT:

Input: A description of quantum circuit C where either

1. Pr[C |0 · · · 0⟩ accepts] ≥ .99
2. Pr[C |0 · · · 0⟩ accepts] ≤ .01

Output: Determine which is the case.

APPROX-Q-CIRCUIT is a promise problem because the input is

promised to satisfy some condition.

15

APPROX-Q-CIRCUIT

APPROX-Q-CIRCUIT is the canonical BQP complete problem,

meaning that it is the “hardest” problem in BQP. If problem A is

in BQP, then it can be reduced to an instance of

APPROX-Q-CIRCUIT.

In other words, if there is a fast classical algorithm for

APPROX-Q-CIRCUIT, then that can be used to solve any problem

in BQP.

16

Claim: APPROX-Q-CIRCUIT is solvable in BQP.

Proof: The description of the circuit C is a list of single- and

two-qubit gates g1, g2, . . . , gT acting on various qubits.

The quantum algorithm to solve APPROX-Q-CIRCUIT is almost

tautological: run the gates g1, g2, . . . in sequence, and measure the

first qubit of resulting state.

This takes linear time in the size of the circuit C .

17

Exponential-time upper bound

APPROX-Q-CIRCUIT ∈ EXP

The acceptance probability of a quantum circuit can be computed

by a classical computer in exponential time.

Proof: Do what we’ve been doing in class: to compute the result

of a circuit, compute the classical description of the state after

applying a gate:

|ψt+1⟩ = gt+1 |ψt⟩

The matrix-vector multiplication takes (2n)2) time (if n = number

of qubits of C). Doing this T times requires O(T · 22n) time.

18

APPROX-Q-CIRCUIT ∈ EXP

If |ψT ⟩ =
∑

x∈{0,1}n αx |x⟩, then

Pr
[
C |0 · · · 0⟩ accepts

]
=

∑
x∈{0,1}n:x1=1

|αx |2

Since APPROX-Q-CIRCUIT is BQP-complete, this means BQP ⊆
EXP.

19

Polynomial-space upper bound

APPROX-Q-CIRCUIT ∈ PSPACE

Quantum computations can also be classically simulated using

polynomial space. This is based on the sum-over-histories or

Feynman path integral approach.

Key idea: in polynomial space, can iterate over exponentially

many possible “histories” or “paths” of a quantum computation,

and add up their amplitudes to determine final probability of

measuring |1⟩ in output qubit.

20

Sum-over-histories approach

Simple circuit example:

21

Sum-over-histories approach

The amplitudes of the output state can be calculated via a tree:

Final amplitude of |b⟩ = sum of amplitudes of all paths from

|0⟩ → |b⟩.

22

Sum-over-histories approach

More generally, suppose we have gates g1, g2, g3, . . . , gT in a

n-qubit circuit.

The computation can be represented by a tree where:

1. root node is labelled by |0 · · · 0⟩
2. each node has 2n children labeled by |x⟩ for x ∈ {0, 1}n

3. edge from node |x⟩ in layer t to node |y⟩ in layer t + 1 is

labeled by transition amplitude ⟨y | gt |x⟩

23

Transition amplitudes

Claim: Given n-qubit basis states |x⟩ , |y⟩, and two-qubit gate g ,

the transition amplitude ⟨y | g |x⟩ can be computed in (classical)

polynomial time.

Proof: Assume without loss of generality that g acts on first two

qubits. Then we are really calculating

⟨y1y2 · · · yn| (g ⊗ In−2) |x1x2 · · · xn⟩
= ⟨y1y2| g |x1x2⟩ · ⟨y3y4 · · · yn | x3x4 · · · xn⟩

where g is a 4× 4 unitary matrix and In−2 is identity on n − 2

qubits.

Note: ⟨y1y2| g |x1x2⟩ is the entry of g in row indexed by (y1, y2)

and column indexed by (x1, x2).
24

Subroutine: ComputeAmp

Input: basis states |x⟩ , |y⟩

1. amp ← 0

2. For u1,u2,...,uT−1 ∈ {0, 1}n:
2.1 amp += ⟨y | gT |uT−1⟩ ⟨uT−1| gT−1 |uT−2⟩ · · · ⟨u1| g1 |x⟩

3. Return amp

25

Subroutine: ComputeAmp

Complexity analysis: The subroutine ComputeAmp computes the

overall transition amplitude ⟨y |C |x⟩.

It requires O(Tn) bits of space to store u1, . . . , uT−1 and poly(n)

bits to store amp.

It takes 2O(Tn) time to loop over all possible paths (u1, . . . , uT−1).

For each path, updating the amplitude takes polynomial time

(because ⟨uj | gj |uj−1⟩ is computable in polynomial time).

26

Polynomial space algorithm for APPROX-Q-CIRCUIT

Input: Quantum circuit C satisfying promise

1. prob ← 0

2. For all y ∈ {0, 1}n where y1 = 1:

2.1 prob += |ComputeAmp(0n, y)|2

3. If prob ≥ .99 then output YES, otherwise output NO

The space usage of this algorithm is poly(n) (to store y and prob)

plus whatever ComputeAmp needs, which is polynomial space.

It computes probability of getting |1⟩ in first qubit of final state.

27

Next time

BQP vs NP, lower bounds on Grover search, random circuit

sampling.

28

	Some complexity classes
	Exponential-time upper bound
	Polynomial-space upper bound

