Quantum Error Correction

Admin

- Pset 2 (Theory) due November 22
- The last quiz will be a practice final
- In-class final on December 9
- Pset 2 (Coding) due December 15

Quantum Computing Inc tour: Dec 11.

Motivation

- The biggest barrier to building a quantum computer capable of running the algorithms we learned about is **noise**.
- Noise comes from many sources
	- or corries from marry sources
• Imperfections in device manufacturing $\sqrt{}$
	- Interactions between device and environment
	- Imperfections in gate operations (over-rotation, mis-alignment, power fluctuations, timing errors,….)
	- Unwanted interactions between qubits (cross-talk)

 \bullet ….

• Quantum systems are more susceptible to noise than classical systems are!

Errors in classical computation

Errors in classical information storage Mation storage

The instuction at 0x0000000025C2E42B referenced

The instuction at 0x0000000035C2E42B referenced

not be read.

Click on OK to terminate the program

Click on CANCEL to debug the program

OK Cancel

Errors in classical communication

BYJU'S

Solution: redundancy olution: redundancy

Corage and transmission: error-correcting codes

C Wifi/3G/4G. LDPC codes, convolutional codes (Turbo Codes, etc)

CD-ROM: Reed-Solomon codes

- Storage and transmission: error-correcting codes
	- Wifi/3G/4G: LDPC codes, convolutional codes (Turbo Codes, etc)
	- CD-ROM: Reed-Solomon codes
- Computation: repetition and majority decoding
	- Repeat every computation 3 times and take majority vote
- Von Neumann, "*Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components*", 1947. Computation: repetition and majority decoding

• Repeat every computation 3 times and take majority vote

• Von Neumann, "Probabilistic Logics and the Synthesis of Relic

Components", 1947.

• Used in computers in spacecra
	- Used in computers in spacecraft/high radiation environments

(Classical) error models

Simplest error model: bit flip channel

An n-bit string will experience an error with overwhelming probability.

$$
P_{r}[n-bif string =+perieness no error] = (1-p)^{n} = exp(-R(n))
$$

(Classical) error models

General error model

(Classical) error correcting codes
\nSimplest code: repetition code
\n
$$
\lim_{b \to 0} \lim_{\delta \to 0} \
$$

Decoding: take majority
\nConsider the *i.i.d.* bit
$$
f(i\rho
$$
 channel with *noise* rate $p \ll \frac{1}{2}$.
\n P_{r} [deAdding is *wrong*] = P_{r} [more *than* $\frac{n}{\epsilon}$ bit *s* get $f^{1/p}$ pred]
\n $\leq \sum_{S \in [n]: B \mid \aleph} \frac{p^{|S|} (1-p)^{n-S1}}{s!} \ll \exp(-\Omega(n)),$

(Classical) error correcting codes

A huge zoo of error-correcting codes, with different properties:

- Hamming codes
- Reed-Solomon/Reed-Muller codes
- LDPC codes
- Polar codes
- Expander codes
- …

Errors in (classical) computations

• Error rates in modern computers are *extremely* low.

• A bit flip error rate $p < 10^{-16}$.

• Only very basic error detection used (there is a parity check bit for every word).

• Von Neumann's scheme is not really used (it was more relevant for the vacuum tube era)

Errors in the quantum realm

 E

• **Problem #1:** There seems to be an infinite number of possible error, even for a single qubit!

• **Problem #2**: cannot copy quantum states!

 $n_{0}+p_{0}ssisl$ ¹⁴³ If ¹⁴⁷¹⁴² ... 14)

• **Problem #3**: measurement destroys quantum information.

• In the early 90s, people thought these issues spelled doom for quantum computers.

Insight: quantum errors can be digitized

Can reduce problem of error-correction for a single-qubit to a **discrete** set of errors

- Bitflip error: $X|0\rangle = 11\rangle$ $X117 = 10$ $X (\alpha \hspace{0.12cm} \text{log} \hspace{0.$
- Phaseflip error:

$$
z = \frac{1}{2} \int_{0}^{\frac{1}{2}} e^{i\theta} dx
$$

\n $z = \frac{1}{2} \int_{0}^{\frac{1}{2}} e^{i\theta} dx$
\n $z = \frac{1}{2} \int_{0}^{\frac{1}{2}} e^{i\theta} dx$

• Bitflip & Phaseflip error:

Tip & Phaseflip error:

\n
$$
\chi \mathcal{F} \left(\alpha \mid o \right) + \beta \mid \gamma \right) = \alpha \mid 1 \rangle - \beta \mid o \rangle
$$
\n
$$
\chi \mathcal{F} \left(\alpha \mid o \right) + \beta \mid \gamma \rangle = -\alpha \mid \gamma \rangle + \beta \mid o \rangle.
$$

Correcting bit flip errors

Use repetition code

$$
|0\rangle \rightarrow |000\rangle = |0\rangle
$$
\n
$$
|1\rangle \rightarrow |111\rangle = |0\rangle
$$
\n
$$
|1\rangle \rightarrow |111\rangle = |0\rangle
$$
\n
$$
|1\rangle \rightarrow |111\rangle = |0\rangle
$$
\n
$$
|0\rangle = \alpha|0\rangle + \beta|1\rangle \rightarrow \alpha|000\rangle + \beta|111\rangle = |0\rangle
$$
\n
$$
|0\rangle = \text{Indeed}
$$
\n
$$
|0\rangle = \text{Indeed}
$$
\n
$$
|0\rangle = \text{Conving}
$$
\n
$$
|
$$

Detecting and correcting bit flip errors

$$
|\overline{\psi}\rangle = \alpha|000\rangle + \beta|111\rangle
$$

 $but \log t \propto 10$ + plis !

- Directly measuring the encoded qubits would destroy the superposition in the logical state. Directly measuring the encoded qubits would destroy the superposition in the logical state.
 $\frac{1}{2} \left(\frac{1}{\sqrt{2}} \right)^{10} \left(\frac{1}{\sqrt{2}} \right)^{10}$
- Instead, compute *error syndromes* and measure *those*.

Correcting *phase* flip errors Probe $f14 = 67$
Phose $f14 = 67$
diagonal basis
 $Z + Z = 1$

Use repetition code in *diagonal* basis!

$$
|0\rangle \mapsto |+++\rangle
$$

observation!

phase flip = bit flip in

 z $|+2|$ = $|-\rangle$

 $Z(1) = |1\rangle$
 $Z(1) = |1\rangle$.

 d iagonal basis.

 $|1\rangle \mapsto |---\rangle$

$$
|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \mapsto \alpha|+++\rangle + \beta|---\rangle =
$$

Enc

Detecting and correcting phase flip errors

Detecting and correcting phase flip errors

 $|\tilde{\psi}\rangle = \alpha|++-\rangle + \beta|---+\rangle$

Concatenate bitflip and phaseflip codes together $\left(0\right) \stackrel{\leftarrow}{\mapsto} |+\rangle^{\otimes 3} \mapsto \frac{1}{\sqrt{3}}$ 8 $|000\rangle + |111\rangle)^{\otimes 3}$ $1 \rightarrow \left| - \right>^{\otimes 3} \mapsto \frac{1}{\sqrt{6}}$ 8 $|000\rangle - |111\rangle)^{\otimes 3}$ 2 *phaseflip* & $\int u^{10d} dx$ ogether
= $\frac{1}{\sqrt{6}}$ (1000) + 1113) (10007 + 1111) (1000) + $\binom{1}{1}$ $\left\{ \begin{array}{c} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{array} \right\}$ $\omega_{\mathcal{F}}$ ↑ $64 \frac{118}{8}$ $+$ (\\\) \bullet (\\\) \bullet (\\\) \bullet (\\) \bullet (\\) \bullet (\\) \bullet + \\) \\) \bullet

Claim: this code can correct both bitflip and phaseflip errors, so long as they occur on a single qubit.

Encoding:

Why errors can be discretized

• Every unitary can be written as a linear combination of Pauli errors.

Next time

• Glimpse into more sophisticated error correcting codes

• Quantum fault-tolerance