
Week 12: Hamiltonians and Quantum

Simulation

COMS 4281 (Fall 2024)



Admin

1. Worksheet and Quiz 7 out tonight.

2. Pset2 Theory due December 4.

3. Final in-class exam on December 9.

4. Pset2 Coding due December 15.
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Last time: Hamiltonians

Physics definition: descriptions of the interactions governing a

quantum system, and the energy assigned to the state of a system.

Computer science definition: quantum analogue of a constraint

satisfaction problem (CSP).

Mathematical definition: A Hermitian matrix.
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Time evolution of a quantum system

The Hamiltonian of a quantum system describes how it will evolve

over time, via the Schrodinger Equation.

i
d |ψ(t)⟩

dt
= H |ψ(t)⟩ .

where |ψ(t)⟩ denotes state of n qubits at time t ∈ R.

This is a differential equation. The way the state changes in the

next time step depends on the current state.
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Time evolution of a quantum system

We can solve the Schrodinger equation to get:

|ψ(t)⟩ = e−iHt |ψ(0)⟩ .

The matrix e−iHt is the function f (x) = e−ixt applied to H:

e−iHt =
∑
j

e−iEj t |vj⟩⟨vj |

where Ej are energies and |vj⟩ are the eigenstates of H.
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Claim: e−iHt is a unitary matrix.

Schrodinger Equation thus describes the unitary evolution of a

quantum system in isolation.

Proof: Let U = e−iHt . Then

UU† =
(∑

j e
−iEj t |vj⟩⟨vj |

)(∑
j e

+iEj t |vj⟩⟨vj |
)

=
∑

j e
−iEj te+iEj t |vj⟩⟨vj | =

∑
j |vj⟩⟨vj | = I
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Hamiltonian simulation problem

Input:

1. A description of a k-local Hamiltonian

H = H1 + H2 + · · ·+ Hm on n qubits.

2. Time t ∈ R.

3. Precision ϵ.

4. Initial quantum state |ψ(0)⟩ (in quantum form).

Goal: Output a quantum state |θ⟩ such that

∥∥∥ |θ⟩ − e−iHt |ψ(0)⟩
∥∥∥ ≤ ϵ.
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Hamiltonian simulation problem

Even though the overall Hamiltonian H is a large matrix (2n × 2n),

it can be specified very succinctly.

Each k-local term Hj is equal to a k-qubit matrix hj tensored with

the identity, so just need to describe hj (2
k × 2k matrix) and the

qubits it acts on.
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Warmup

Suppose H consists of a single term H1 = h ⊗ In−k that acts

nontrivially on the first k qubits.

Then e−iHt = e−iht ⊗ In−k .

The unitary e−iht is like some k-qubit gate. This can be

decomposed into at most 2O(k) single- and two-qubit gates, which

for k = O(1) is constant.
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More interesting case

Suppose H = H1 + H2.

Temptation: e−iHt = e−i(H1+H2)t = e−iH1t e−iH2t .

This is true for numbers, but not for matrices!
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Counterexample

X =

(
0 1

1 0

)
, Z =

(
1 0

0 −1

)
. Note that XZ ̸= ZX .

eX+Z ̸= eX eZ

Exercise: verify this!
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If A,B are square matrices, then

eA+B = eAeB

if and only if AB = BA.
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Lie-Trotter-Suzuki formula

For all matrices A,B:

eA+B = lim
r→∞

(
eA/reB/r

)r

In the context of Hamiltonians:

e−i(H1+H2)t = lim
r→∞

(
e−iH1

t
r e−iH2

t
r

)r
Time-evolving a sum of terms is same as a sequence of

infinitesimal time evolutions of the terms.
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Lie-Trotter-Suzuki formula

More generally,

∥∥∥eA1+···+Am −
(
eA1/r · · · eAm/r

)r∥∥∥ ≤ ϵ

provided that

r ≫ m2L2

ϵ

where L = maxi ∥Ai∥ the maximum of the spectral norms of each

Ai (i.e. the largest singular value of Ai ).
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Hamiltonian simulation algorithm

Input: k-local Hamiltonian H = H1 + · · ·+ Hm, time t ∈ R,
precision ϵ, initial state |ψ(0)⟩.

• Choose r ≫ m2t2
(
maxi ∥Hi∥2

)
/ϵ

• Apply e−iH1t/r , e−iH2t/r , . . . , e−iHmt/r in sequence r times to

the current state.

Each e−iHj t/r is a k-local unitary that can be decomposed into

2O(k) elementary gates.
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Hamiltonian simulation algorithm

Number of qubits needed: n.

Number of gates: 2O(k) ·m · r = poly
(
2k ,m, t,max ∥Hi∥, 1ϵ

)
.
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The development of Hamiltonian simulation algorithms is an active

area of quantum algorithms research.

• More efficient algorithms?

• Faster simulation algorithms for special types of Hamiltonians?

• Nonlocal interactions?

The Lie-Suzuki-Trotter-based algorithms are conceptually simple,

but the time complexity is not optimal. There are more

sophisticated algorithms that achieve better performance

theoretically, but are much more complicated.
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Measuring energy of a state



Input: Local Hamiltonian H =
∑

i Hi and a state |ψ⟩.

Goal: An estimate of the energy ⟨ψ|H |ψ⟩.

This is an important subroutine for applications in quantum

physics and chemistry. For example, you might want to find a state

that minimizes the energy.

Solution: Hamiltonian simulation + phase estimation.
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Assume without loss of generality that ∥H∥ ≤ 1. This means all

energies {Ej} have magnitude at most 1.

The unitary U = e−iH has spectral decomposition

U =
∑
j

e−iEj |vj⟩⟨vj |.

Using phase estimation with unitary U and eigenstate |vj⟩ with k

ancilla qubits, we get estimate |Ẽj − Ej | ≤ 2−k .
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Phase estimation requires running (controlled versions of)

U,U2, . . . ,U2k .

Note that Ut = e−iHt , which we can implement using Hamiltonian

simulation algorithms!

In order for this to be efficient, we need 2k ≤ poly(n), or

k = O(log n) bits of precision.
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Given a general state |ψ⟩ =
∑

j αj |vj⟩, running phase estimation

yields a state close to

∑
j

αj |vj⟩ ⊗ |Ẽj⟩ .

Measuring the second register yields energy estimate Ẽj with

probability |αj |2.

The expected value of the output is

∑
j

|αj |2Ẽj ≈
∑
j

|αj |2Ej = ⟨ψ|H |ψ⟩ .

Repeating this procedure several times and taking empirical

average yield a good estimate of ⟨ψ|H |ψ⟩.
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Perspectives on quantum simulation



In his explorations of quantum computing, Feynman was motivated

by the apparent difficulty of classically simulating quantum

systems.

Today, quantum simulation is considered the primary application

of quantum computers, if and when we build them.
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Why simulate quantum physics?

Scientific simulation occupies a significant fraction of the world’s

supercomputing resources today. They are used for:

• Weather simulations

• Simulating nuclear weapons

• Simulating complex fluid dynamics

• Materials design

• Protein folding

and much, much more!
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Quantum simulations: the optimistic take

We often hear about the glorious applications of quantum

simulations to:

• Quantum chemistry

• Pharmaceuticals

• Materials design

• Catalyst design

• Understanding superconductivity

and much, much more!
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Quantum simulations: what we know

Currently, there are not many proposals for specific problems that

• Known classical methods do not give good answers

• Quantum computers will provably give good answers

• Have practical or scientific importance
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Quantum simulations: what we know

There is a large emphasis on using quantum computers to solve

quantum chemistry problems.

An oft-repeated example is the goal of better understanding

nitrogen fixation in the Haber process, which is used to produce

fertilizer (and explosives). This process consumes about 1% of

world’s yearly energy output.

It would be great to use quantum computers to optimize this

process even by a little bit!
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However, current proposals for using quantum computers to solve

quantum chemistry problems (such as exploring the Haber process)

involve solving ground state problems, rather than dynamics

problems (i.e. time-evolving a state).

However ground state problems are NP-hard in general – and we

don’t expect a generic quantum algorithm for these!

Quantum computers could still be useful for specific chemistry

problems like nitrogen fixation, but we would only find out on a

case-by-case basis via experimentation.
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Quantum dynamics problems are more surefire candidates for

quantum advantage. Examples of these include:

• Simulating quantum systems where particles are strongly

correlated and highly entangled (superconductivity)

• Exploring chaotic quantum systems

• Exploring equilibration properties of quantum systems

• Simulating particle collisions in colliders

These problems are interesting and important from a fundamental

science angle, rather than from engineering/pratical angle.
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Main takeaway: The prospects of using quantum computers to

solve important quantum chemistry/physics problems are

tantalizing, but we can’t point to specific, slam-dunk practical

applications of quantum computers at the moment (except for

breaking RSA, maybe).

However, we didn’t forsee all the applications of digital computers

back in the 40’s and 50’s.

Once we have large scale quantum computers to play with (and

maybe before then), we are certainly going to find exciting uses of

them that we can’t even imagine at the moment.
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Next time

Quantum error correction.
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