
Week 11: Hamiltonians and Quantum

Simulation

COMS 4281 (Fall 2024)



Admin

1. Worksheet and Quiz 6 out tonight.

2. Pset2 will be out this weekend, and due December 4.

3. Final in-class exam on December 9.
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Hamiltonians

In quantum physics, Hamiltonians describe the laws of nature of a

quantum system. In principle, they encode all information about

how a collection of particles (in isolation) interact with each other

over time.

Arguably, the killer app of quantum computing is Hamiltonian

simulation, which is to evolve a quantum state over a time

according to a Hamiltonian.
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Linear algebra review



Spectral theorem

Let A ∈ Cd×d be a Hermitian matrix. It can always be

diagonalized.

There exists an orthonormal basis {|v1⟩ , . . . , |vd⟩} for Cd and

real eigenvalues λ1, . . . , λd such that

A =
d∑

j=1

λj |vj⟩⟨vj |

This is called a spectral decomposition of A.
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Spectral theorem

In other words, A looks like

A = V


λ1

λ2
. . .

λd

V †

where V is a unitary matrix with |vj⟩ as its columns.
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Spectral theorem

The vector |vk⟩ has eigenvalue λk with respect to A.

Proof: A |vk⟩ =
(∑

j λj |vj⟩⟨vj |
)
|vj⟩

=
∑

j λj |vj⟩ ⟨vj | vk⟩

= λk |vk⟩ because ⟨vj | vk⟩ = 1 only when j = k .
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Functions of Hermitian matrices

Let f : R → C denote a function. Then for all Hermitian matrices

A with spectral decomposition
∑

j λj |vj⟩⟨vj |, we define

f (A) =
∑
j

f (λj) |vj⟩⟨vj |.

In other words, f just changes the eigenvalues of A, and leaves

the eigenvectors unchanged.
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Functions of Hermitian matrices

Example: let f (x) = x2. Then

f (A) =
∑

j λ
2
j |vj⟩⟨vj |.

This matches

A2 =
(∑

j λj |vj⟩⟨vj |
)(∑

k λk |vk⟩⟨vk |
)

=
∑

j ,k λjλk |vj⟩ ⟨vj | vk⟩ ⟨vk |

=
∑

j λ
2
j |vj⟩⟨vj |
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Functions of Hermitian matrices

Example: let f (x) = sin(x). Then

f (A) =
∑

j sin(λj) |vj⟩⟨vj |.

8



The computer science perspective

of Hamiltonians



If you take a physics class, you learn about Hamiltonians as the

sum of potential and kinetic energy operators of a system, and

their connection to equations of motion, etc., etc., etc...

Before we dive into the physics, let’s first see how computer

scientists think about Hamiltonians.

CS view of Hamiltonians: Hamiltonians are quantum

analogues of constraint satisfaction problems (CSPs).
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Constraint satisfaction problems

An instance of a k-local CSP consists of:

• variables x1, . . . , xn that can take boolean values

• constraints C1, . . . ,Cm where each Cj indicates the allowed

values for a subset Sj of variables.

Example: 3SAT is a 3-local CSP where each of the constraints Cj

are of the form

Cj = x1 ∨ x5 ∨ ¬x7
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Constraint satisfaction problems

The important questions: given a CSP,

1. Is it satisfiable?

2. What is the maximum number of constraints that can be

simultaneously satisfied?

These questions generally correspond to NP-complete problems.
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Max-Cut Problem

Given a graph G = (V ,E ), find a partition of vertices that

maximizes number of cut edges.

Equivalently, a 2-local CSP: - For every vertex v ∈ V , a variable

xv . - For every edge e = (u, v) ∈ E , a constraint xu ̸= xv .
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Max-Cut Problem

NP-hard to find the optimal cut.

However, it is possible to find an approximately optimal cut in

polynomial time. The Goemans-Williamson algorithm can find a

cut that achieves 87.8% of the maximum possible.

Open question: is there a polynomial-time algorithm that

achieves a better approximation of Max-Cut?
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Classical-quantum dictionary
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Hamiltonians



Mathematically, a n-qubit Hamiltonian H is a Hermitian n-qubit

matrix. It has dimension 2n × 2n.

By the spectral theorem, we can diagonalize H =
∑

j Ej |vj⟩⟨vj |.

{Ej}j are the energy levels of H. The vector |vj⟩ is an energy

eigenstate with energy Ej .

15



Mathematically, a n-qubit Hamiltonian H is a Hermitian n-qubit

matrix. It has dimension 2n × 2n.

By the spectral theorem, we can diagonalize H =
∑

j Ej |vj⟩⟨vj |.

{Ej}j are the energy levels of H. The vector |vj⟩ is an energy

eigenstate with energy Ej .

15



Hamiltonians

The physical interpretation of a Hamiltonian H: it assigns an

average energy to every n-qubit state |ψ⟩. Energy of |ψ⟩ with
respect to H: ⟨ψ|H |ψ⟩

Since energy eigenstates form a basis, we can write

|ψ⟩ =
∑

j αj |vj⟩.

Thus energy of |ψ⟩ = ⟨ψ|
(∑

j Ej |vj⟩⟨vj |
)
|ψ⟩

=
∑

j Ej |⟨ψ | vj⟩|2 =
∑

j Ej |αj |2.

16



Hamiltonians

The physical interpretation of a Hamiltonian H: it assigns an

average energy to every n-qubit state |ψ⟩. Energy of |ψ⟩ with
respect to H: ⟨ψ|H |ψ⟩

Since energy eigenstates form a basis, we can write

|ψ⟩ =
∑

j αj |vj⟩.

Thus energy of |ψ⟩ = ⟨ψ|
(∑

j Ej |vj⟩⟨vj |
)
|ψ⟩

=
∑

j Ej |⟨ψ | vj⟩|2 =
∑

j Ej |αj |2.

16



Hamiltonians

The states |ψ⟩ with minimum energy with respect to H are called

ground states. The minimum energy is called ground energy.

Eground = min|ψ⟩ ⟨ψ|H |ψ⟩.

Exercise: The ground energy of H is equal to the minimum

eigenvalue of H, and all ground states are eigenvectors of H.
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Local Hamiltonians

Physics focuses on local Hamiltonians, which means

H = H1 + H2 + · · ·+ Hm

where each Hj is a local Hamiltonian term, acting nontrivially on

a small set of qubits.

Just like how quantum circuits consist of local gates acting on

one or two qubits at a time, the interesting Hamiltonians in physics

are built out of local terms.
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Local Hamiltonians

Example: a line of interacting particles.

Each vertex corresponds to a qubit. Qubits only interact with

neighboring qubits.

For every pair of neighbors (j , j + 1), there is a Hamiltonian term

Hj ,j+1 = Ij−1 ⊗ hj ,j+1 ⊗ In−j−1

where hj ,j+1 is a 4× 4 Hermitian matrix.
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Local Hamiltonians

Example: a line of interacting particles.

The overall Hamiltonian is

H =
∑
j

Hj ,j+1

Note that H is a gigantic matrix (2n × 2n), but it is built out of a

small number of local matrices hj ,j+1. Just like how an n-qubit

quantum unitary can be built out of a small number of local

unitary gates. 20



Local Hamiltonians

Local Hamiltonians are prevalent in physics because the laws of

nature are inherently local: particles interact with nearby ones.

Depending on what kind of physical phenomena is being

investigated, physicists will write down different local Hamiltonians.

For example, electric field, magnetic field, nuclear forces, etc...
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Ising Hamiltonian

An important model of magnetism in physics.

Each particle is a magnet that points up (|0⟩) or points down (|1⟩).
Neighboring magnets want to anti-align.

There is also a global magnetic field that encourages all magnets

to point in a specific direction.
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Ising Hamiltonian

Recall that Z =

(
1 0

0 −1

)
. The 1D Ising Model is

H =
n−1∑
i=1

Zi ⊗ Zi+1 + µ

n∑
i=1

Zi

where µ = magnetic field strength parameter.

Note: Zi ⊗ Zi+1 and Zi are implicitly tensored with identity

operators on all the other qubits. Each term is a 2n × 2n matrix!
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Why does µZi capture the ”global magnetic field” on the i ’th

qubit?

We can diagonalize Z = |0⟩⟨0| − |1⟩⟨1| =

(
1 0

0 0

)
−

(
0 0

0 1

)
.

Thus µZi has energy µ for any state where i ’th qubit is in state

|0⟩, and −µ where i ’th qubit is in state |1⟩.

If µ > 0, then i ’th qubit ”prefers” to be in state |1⟩ (because
that’s lower energy); otherwise it prefers |0⟩.
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Why does Zi ⊗ Zi+1 capture the ”anti-alignment” interaction

between qubits i and i + 1?

Its spectral decomposition:

Zi ⊗ Zi+1 =
(
|0⟩⟨0|i − |1⟩⟨1|i

)
⊗
(
|0⟩⟨0|i+1 − |1⟩⟨1|i+1

)
= |00⟩⟨00|i ,i+1 + |11⟩⟨11|i ,i+1 − |01⟩⟨01|i ,i+1 − |10⟩⟨10|i ,i+1

The lower energy configurations are where qubits i and i + 1 point

in opposite directions!
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Ising Hamiltonian

The energy of a state |ψ⟩ in the Ising model is

⟨ψ|H |ψ⟩ =
n−1∑
i=1

⟨ψ|Zi ⊗ Zi+1 |ψ⟩+ µ

n∑
i=1

⟨ψ|Zi |ψ⟩

The ”anti-alignment” and ”global magnetic field” terms compete

with each other!

Exercise: what are the minimum energy configurations, depending

on µ?
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The Ising Hamiltonian is a classical Hamiltonian, because it is

diagonal in the standard basis. In particular, ground states are all

classical basis states.

An example of a quantum Hamiltonian is the Transverse Field

Ising Model:

H = −
n−1∑
i=1

Zi ⊗ Zi+1 + g
n∑

i=1

Xi

where X =

(
0 1

1 0

)
.

The ground states of this Hamiltonian are generally entangled

and non-classical.
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The important questions: given a (local) Hamiltonian H,

1. What is its ground energy?

2. What are its ground states?

3. How does a quantum system, governed by H, evolve over

time?
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Ground states

Ground states are interesting because they represent quantum

systems at low temperatures (e.g. near absolute zero). Ground

states of quantum Hamiltonians tend to exhibit bizarre quantum

effects.
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Ground states

Computing ground states and ground energies of Hamiltonians is

not easy!

In fact, it is generally an NP-hard problem.

Finding ground states of local Hamiltonians is analogous to finding

optimal solutions of CSPs.
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Next time

Time evolution under a Hamiltonian, and simulating it.
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