
Week 11: Quantum complexity theory

COMS 4281 (Fall 2024)



Admin

1. Worksheet and Quiz 6 out tonight.

2. Pset2 will be out this weekend, and due December 4.

3. Final in-class exam on December 9.
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Last time

Introduction to computational complexity theory. Some basic

complexity classes:

• P, BPP - efficiently solvable problems (on classical computers)

• NP - efficiently verifiable problems (on classical computers)

• PSPACE - problems solvable using polynomial memory

• EXP - exponential time-solvable problems (on classical

computers)

• BQP - efficiently solvable problems (on quantum computers)
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The complexity landscape
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Last time

• Quantum computers are at least as powerful as classical

computers:

BPP ⊆ BQP

• Quantum computers can be simulated on classical computers

using exponential resources

BQP ⊆ EXP

• Quantum computers can be simulated on classical computers

using polynomial memory

BQP ⊆ PSPACE
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BQP vs NP



NP

Decision problems where the “yes” inputs have solutions that can

be efficiently checked.

Example: Traveling Salesman Problem

Input: Graph G , integer k

Output: Does G have a tour of length at most k that visits every

city once and returns to origin?

TSP is in NP because given a proposed tour, one can check

whether it visits every city once, returns to origin, and has length

at most k .
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NP - Equivalent Definition

A decision problem has an NP “algorithm” if the algorithm can

nondeterministically guess a solution (if it exists), and check the

solution in polynomial time. If there is no solution, no guess will be

accepted.
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A common misconception

Quantum computers solve problems by trying all possible solutions

simultaneously and outputting a correct one!

If that were true, then NP complete problems would be instantly

solvable on quantum computers.

However this simplistic picture of quantum computing is not true.

The truth is much more interesting...
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Evidence that NP ̸⊆ BQP

We don’t have the tools available to outright prove that BQP

cannot solve NP-complete problems. But we can try to give

evidence for this.

We will show a blackbox separation (also known as a oracle

separation) between NP and BQP.
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Computing with black boxes

Decision problems are defined with inputs that are represented as

binary strings (i.e. graphs, integers, etc. are represented in binary),

and the outputs are about whether the inputs satisfy some

property.

In the oracle model, decision problems get black box functions

as input, and the goal is to decide something about the function

given query access to the function.

In particular, cannot “look inside the black box” in order to solve

the problem.
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Unstructured search problem

Input: A black box function f : {0, 1}n → {0, 1}.

Output: Does there exist x such that f (x) = 1?
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Unstructured search problem

There is an NP oracle algorithm that “solves” the Unstructured

Search Problem with 1 query.

If there is a solution x , the NP oracle algorithm guesses x and

queries f to see check if f (x) = 1.
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Unstructured search problem

There is a quantum oracle algorithm (namely, Grover’s

algorithm) that solves the Unstructured Search Problem with

O(
√
2n) quantum queries.

Question: is there a quantum algorithm that can solve

Unstructured Search Problem with poly(n) queries?
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Lower bound on unstructured search

Bennett, Bernstein, Brassard, and Vazirani: “Strengths and

weakness of quantum computing” (1997)

Suppose there was a quantum algorithm A that could find a

marked input to f : {0, 1}n → {0, 1} using T ≪
√
2n queries to

Of .

We will show that A can’t increase the amplitude on the marked

input fast enough to notice it.
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Modeling the algorithm

The algorithm A alternates between fixed unitaries A0,A1, . . . ,AT

that don’t depend on f , and phase oracles Of .

|0⟩
A0

Of
A1

Of
A2

· · · Of
AT

|0⟩ · · ·

It starts in the all zeroes state, and either outputs a marked input

|x∗⟩ with high probability or outputs “NO MARKED INPUT”.
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Hybrid method

Imagine running the algorithm A on the all zeroes function (there

is no marked input). This is equivalent to running the algorithm

with the phase oracle I .

|0⟩
A0

I
A1

I
A2

· · · I
AT

|0⟩ · · ·

Let |ψI
T ⟩ denote the final state of the algorithm. Measuring it

yields “NO MARKED INPUT” with high probability.
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Goal: Show there exists f (x) with unique solution x∗, where

running A with Of yields output state |ψf
T ⟩ satisfying

∥∥∥ |ψI
T ⟩ − |ψf

T ⟩
∥∥∥ ≤ O(T/

√
2n) ≪ 1.

Measuring |ψf
T ⟩ yields “NO MARKED INPUT” with high

probability, which means the algorithm Failed.
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Identifying an “overlooked” input

Define |ψI
t⟩ = state of algorithm querying I right after t’th query,

for 1 ≤ t ≤ T .

|ψI
t⟩ =

∑
x ,w

αt,x ,w |x⟩︸︷︷︸
query register

⊗ |w⟩︸︷︷︸
workspace

Intuition: There has to be an x∗ where the total amplitude over

all timesteps is small.
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Identifying the “overlooked” input

Define the query magnitude of x ∈ {0, 1}n

Mx =
T∑
t=1

∑
w

|αt,x ,w |2.
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Claim:
∑

x Mx = T

Proof:
∑

x Mx =
∑T

t=1

∑
x ,w |αt,x ,w |2 (by definition of Mx)

=
∑T

t=1 1 (because |ψI
t⟩ is a unit vector)

= T .
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Identifying an “overlooked” input

Therefore there exists x∗ where Mx∗ = T/2n.

Define f (x) to have x∗ as a unique solution.

This x∗ is an “overlooked” input - it does not get a lot of

attention from the algorithm!
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Hybrid method

To show that |ψf
T ⟩ is close to |ψI

f ⟩, we analyze hybrids, which are

fictitious runs of the algorithm where the oracle changes in the

middle.
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Hybrid H0:

A0

I
A1

I
A2

· · · I
AT

· · ·

Hybrid H1:

A0

Of
A1

I
A2

· · · I
AT

· · ·

22



Hybrid method

Hybrid Hk−1: first k−1 queries to f , last T − (k−1) queries to I .

A0

· · · Of
Ak−1

I
Ak

I · · · I
AT

· · · · · ·

Hybrid Hk :

A0

· · · Of
Ak−1

Of
Ak

I · · · I
AT

· · · · · ·

Define |ψ(k)
t ⟩ = state of Hk right before unitary At

Observation #1: |ψ(t)
t ⟩ = (Of ⊗ I ) |ψ(t−1)

t ⟩
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Hybrid method

Hybrid Hk−1: first k−1 queries to f , last T − (k−1) queries to I .

A0

· · · Of
Ak−1

I
Ak

I · · · I
AT

· · · · · ·

Hybrid Hk :

A0

· · · Of
Ak−1

Of
Ak

I · · · I
AT

· · · · · ·

Define |ψ(k)
t ⟩ = state of Hk right before unitary At

Observation #2:

|ψ(t−1)
T ⟩ = AT · AT−1 · · ·At |ψ(t−1)

t ⟩

|ψ(t)
T ⟩ = AT · AT−1 · · ·At |ψ(t)

t ⟩
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Hybrid method

Observation #3: Since applying the same unitary to two vectors

does not change their distance,∥∥∥AT |ψ(0)
T ⟩ − AT |ψ(T )

T ⟩
∥∥∥ =

∥∥∥ |ψ(0)
T ⟩ − |ψ(T )

T ⟩
∥∥∥ .

which by triangle inequality is at most

=
∥∥∥ T∑

t=1

|ψ(t−1)
T ⟩ − |ψ(t)

T ⟩
∥∥∥ ≤

T∑
t=1

∥∥∥ |ψ(t−1)
T ⟩ − |ψ(t)

T ⟩
∥∥∥

By Observations #1 and #2 this is the same as

=
T∑
t=1

∥∥∥ |ψ(t−1)
t ⟩ − |ψ(t)

t ⟩
∥∥∥ =

T∑
t=1

∥∥∥ |ψ(t−1)
t ⟩ − (Of ⊗ I ) |ψ(t−1)

t ⟩
∥∥∥ .
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Hybrid method

For each t, we can write

|ψ(t−1)
t ⟩ =

∑
x ,w

αt,x ,w |x⟩ ⊗ |w⟩

where |x⟩ = query register and |w⟩ = workspace register.

Then∥∥∥ |ψ(t−1)
t ⟩ − (Of ⊗ I ) |ψ(t−1)

t ⟩
∥∥∥ =

∥∥∥2 ∑
w

αt,x∗,w |x∗⟩ ⊗ |w⟩
∥∥∥

=

√
2
∑
w

|αt,x∗,w |2 .
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Hybrid method

Putting everything together:

∥∥∥AT |ψ(0)
T ⟩ − AT |ψ(T )

T ⟩
∥∥∥ ≤

T∑
t=1

√
2
∑
w

|αt,x∗,w |2

≤

√√√√2T ·
T∑
t=1

∑
w

|αt,x∗,w |2

=
√

2TMx∗

≤
√
2T 2/2n = O(T/

√
2n).
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Quantum advantage



We’re still far away from being able to run Grover’s algorithm or

Shor’s factoring algorithm. How to demonstrate quantum

advantage in the near term?
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Quantum supremacy task

We wish to find a computational task T that:

1. NISQ (Noisy Intermediate-Scale Quantum) machine can run

T in, e.g. < 1 second.

2. Verifiable on a classical computer in a reasonable amount of

time (e.g. several weeks on a supercomputing cluster)

3. Some complexity evidence that T cannot be efficiently solved

by classical computers.

Such a task T would demonstrate the supremacy of quantum

computers over classical computers.
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Quantum supremacy task

This computational task T can only happen in a “sweet spot” with

∼ 50-100 qubits.

Enough that it’s not easy for classical computers, but not too

much so that we can run it on our existing quantum computers,

and also verify it using ∼ 250 operations on a classical computer.
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Random circuit sampling

Number of qubits n = 50

Number of gates m = 200

Number of samples T = several million

1. Pick a random quantum circuit C acting on n qubits, with m

gates.

2. Using quantum computer run circuit C on |0 · · · 0⟩, generate
samples x1, . . . , xT from the distribution DC .

3. Output x1, . . . , xT .

The distribution DC : each sample x occurs with probability

pC (x) = | ⟨x |C |0 · · · 0⟩ |2.
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Hardness of random circuit sampling?

A quantum computer, by definition, can easily perform the random

circuit sampling task. How hard is it for a classical computer to do

the same?

Theorem (Bouland, Fefferman, Nirkhe, Vazirani 2019): There is

no classical algorithm that, given circuit C , can generate samples

from DC with high probability, unless the polynomial hierarchy

collapses to the third level.
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Hardness of random circuit sampling?

“X unless the polynomial hierarchy collapses” is complexity theory

evidence that X is true. It is a generalization of the assumption

that P ̸= NP.

This theorem talks about sampling exactly from DC . However, not

even the quantum computer can do that, because it has some small

amount of noise. One can ask how hard is it to approximately

sample from DC . It is conjectured that this is still hard for classical

algorithms (assuming polynomial hierarchy does not collapse).
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Verification of random circuit sampling

How do you check whether a bunch of samples x1, . . . , xT were

generated by DC? There is no known efficient way of doing so.

Idea: Heavy output generation (HOG) test

1. Use a classical supercomputer to compute the median α of all

pC (x).

2. If at least 2/3 of x1, . . . , xT are heavy (meaning pC (xi ) ≥ α),

then accept. Otherwise reject.
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Verification of random circuit sampling

Intuition: heavy x ’s form the bulk of the probability mass of

distribution DC . Sampling from DC should yield a lot of heavy

strings.

However, it should also be hard for a classical computer to predict,

given a circuit C and x , whether pC (x) is above the median.

If a quantum machine is able to consistently output heavy strings

from DC , then the machine must’ve “done something right”.
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Experimental demonstrations

Conducted in Fall 2019. Ran many circuits on their 49-qubit

”Sycamore” chip.

Extremely noisy: signal-to-noise ratio is about 1%. (However,

Google claims it is enough to verify the sampling).

Recently: many challenges to this claim (faster classical

simulations, noisy sampling may not be as hard as we thought).
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Next time

Mixed states.
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