
Frontiers of Quantum Complexity and Cryptography Spring 2022

Lecture 6 – State and Unitary Synthesis

Lecturer: Henry Yuen Scribes: Thomas Chen

1 Overview

This lecture discussed the State Synthesis Problem (SSP) and Unitary Synthesis Problem (USP).
The motivating questions are as follows.

(Q1) What is the complexity of synthesizing states and unitaries?

(Q2) Is there a difference in complexity of synthesizing states versus unitaries?

(Q3) How much of the complexity of these tasks is classical, versus that due to quantum aspects?

2 State Synthesis Problem

Recall from a few lectures ago our notion of the complexity of a quantum state:

Definition 1 (State complexity). The complexity, Cϵ(|ψ⟩), of a state |ψ⟩ is the minimum size of
a quantum circuit1 that outputs |ψ⟩ up to error ϵ.

As discussed previously, a simple counting argument shows that for most n-qubit states |ψ⟩,
Cϵ(|ψ⟩) = Ω(exp(n)). The same is true for the classical complexity of boolean functions, where
most n-bit boolean functions f : {0, 1}n → {0, 1} are such that C(f) = Ω(exp(n)), where C(f)
denotes the minimum size classical circuit required to compute f . This motivates the following nat-
ural question: can the complexity of synthesizing (i.e., generating) a quantum state be reduced to
the complexity of computing a boolean function? This question is formalized as the state synthesis
problem (abbreviated SSP):

State Synthesis Problem. Is there a quantum query algorithm A, a polynomial p(n), and an
encoding scheme that maps n-qubit states |ψ⟩ to a function fψ : {0, 1}p(n) → {0, 1} such that A
makes poly(n) queries to fψ and outputs a good approximation of |ψ⟩?

Diagrammatically, the task looks like the following:

A
↔

f|ψ⟩
↔

↓
|ψ⟩

1The measure of complexity implicitly depends on the choice of gate set, but for different universal gate sets the
corresponding complexity measures are equivalent up to polylog(n) factors.

1

If the answer to this question is yes, then in this sense, quantum state synthesis is no harder than
computing an appropriate boolean function.

2.1 Quantum Query Model

First, let’s review the quantum query model. A T -query quantum algorithm A that queries a
classical m-bit function f : {0, 1}m → {0, 1} is a tuple of unitaries

A = (A0, A1, ...AT)

where each unitary Ai acts on at least m qubits. The execution of the algorithm behaves as follows:
starting with the all zeroes state (|0 · · · 0⟩), first the unitary A0 is applied, then an oracle unitary
Of is applied to the first m qubits, then A1 is applied, then an oracle unitary Of , and so on, until
the oracle unitary Of has been called T times. This is depicted in the circuit diagram below.

A0

Of

A1

. . .

AT

. . .

...
. . .

. . .

. . .

There are two models for the oracle unitary Of ; one called the phase oracle and one called the
XOR oracle. In the study of quantum algorithms these models are equivalent, but one may be
more convenient to work with.

Phase oracle. This is a unitary Of acting on m qubits such that for all x ∈ {0, 1}m,

Of |x⟩ = (−1)f(x)|x⟩ .

When applied to a superposition, we have

Of
∑
x

αx|x⟩ =
∑
x

αx (−1)f(x) |x⟩ .

XOR oracle. This is a unitary Of acting on m+1 qubits such that for all x ∈ {0, 1}m, b ∈ {0, 1},

Of |x, b⟩ = |x, b⊕ f(x)⟩ .

We can easily transform one of these oracles into the other. For this lecture, we just show how to
transform an XOR oracle into a phase oracle.

∑
x αx|x⟩

OXORf OXORf

∑
x αx(−1)f(x)|x⟩

|0⟩ Z |0⟩

To see that this indeed produces the claimed output, note that the state right after the first XOR
oracle is

2

|ψ1⟩ =
∑
x

αx|x⟩|f(x)⟩

Applying the Z gate yields

|ψ1⟩ =
∑
x

αx(−1)f(x)|x⟩|f(x)⟩

Reapplying the XOR oracle will reverse the original computation on the m + 1th qubit, reverting
the last qubit to |0⟩. Thus we can simulate the phase oracle using two calls to the XOR oracle.

Remark: There is a more efficient transformation that uses just one call to an XOR oracle to
produce a phase oracle. If we let the last qubit be a superposition,

OXORf (|x⟩|−⟩) = 1√
2
(|x⟩|f(x)⟩+ |x⟩|1⊕ f(x)⟩) = (−1)f(x)|x⟩|−⟩ .

2.2 A solution to the State Synthesis Problem

We now discuss the following solution to the State Synthesis Problem presented by Aaronson [1].

Theorem 2. There exists an (n+1)-query algorithm A and an encoding of states |ψ⟩ into boolean
functions fψ : {0, 1}poly(n) → {0, 1} that solves the State Synthesis Problem. Moreover, the algo-
rithm A is space efficient (the unitaries Ai act on poly(n) qubits) and the non-oracle unitaries Ai
are time-efficient (meaning that they can be implemented by poly(n)-size circuits). However, the
oracle unitaries Ofψ will in general require exponential time to compute.

Proof. The key idea of the proof is that a state can be decomposed into its conditional amplitudes.
We let f hold all these conditional amplitudes, and we show an efficient procedure to reconstruct
the state from its conditional amplitudes.

For the following state, the conditional amplitudes for the first qubit are 1√
2
and 1√

2
, corresponding

to when the qubit equals 0 and 1, respectively.

|ψ⟩ = 1√
4
|000⟩ − 1√

4
|010⟩+ 1√

2
|111⟩ = 1√

2
|0⟩ ⊗ (

1√
2
|00⟩ − 1√

2
|10⟩) + 1√

2
|1⟩ ⊗ (|11⟩) .

We can build a binary tree to hold all the conditional amplitudes, like in figure 1. The nodes
correspond to the conditioned states– the left child of a node is the state obtained by conditioning
the node state on the next qubit being 0, and the right child conditioning on 1. The edges of the
tree are annotated with the conditional amplitudes. In general, the decomposition is as follows:

|ψ⟩ =
∑

x∈{0,1}n
βx|x⟩

= α0|0⟩|ψ0⟩+ α1|1⟩|ψ1⟩ · · ·

=
∑

x∈{0,1}n

(
γx

n∏
j=1

αx1...xj

)
|x⟩

3

Where αx1...xj is the amplitude of the kets of |ψ⟩ whose jth bit is xj , conditioned on their first
j− 1 bits are x1...xj−1. We assume these conditional amplitudes are all real, while γx is a complex
number on the unit circle. Note that we retrieve the original amplitude, βx of |x⟩ by multiplying
all conditional amplitudes along the path to leaf |x⟩, then multiplying by γx.

Figure 1: Decomposition of n-qubit state into its conditional amplitudes

Assume we are given oracle access to a classical function f that encodes the conditional amplitudes.
The way we interact with this function is that when we query it, it writes a classical description of
the conditional amplitudes we asked for in an ancilla qubit.

The following is an algorithm to iteratively reconstruct |ψ⟩ from oracle calls to f .

(1) Ask for 1st pair of conditional amplitudes, (α0, α1) and prepare α0|0⟩+ α1|1⟩

(2) Controlled on the first qubit in superposition, ask oracle for the conditional amplitudes cor-
responding to the left or right of the tree.

α0|0⟩ ⊗ |“α00, α
′′
01⟩+ α1|1⟩ ⊗ |“α10, α

′′
11⟩

Here, the quotations denote that the information of the conditional amplitudes is written out
classically. For each classical encoding of amplitudes, construct the corresponding qubit to
obtain:

α0|0⟩ ⊗ |“α00, α
′′
01⟩ ⊗ (α00|0⟩+ α01|1⟩) + α1|1⟩ ⊗ |“α10, α

′′
11⟩ ⊗ (α10|0⟩+ α11|1⟩)

Finally, as in the phase oracle transformation, we uncompute the classical information to
obtain

4

α0|0⟩ ⊗ (α00|0⟩+ α01|1⟩) + α1|1⟩ ⊗ (α10|0⟩+ α11|1⟩)

(2 to n) We can repeat this for the next batches of conditional amplitudes, so that by stage n, we
have the state∑

x αx1αx1x2 ...αx|x⟩

(n+ 1) We run the same procedure to call the oracle in superposition to obtain γx, generate the state∑
x βx|x⟩ ⊗ |“γ′′x⟩, then uncompute the classical information to obtain

∑
x βx|x⟩, as desired.

The correctness of the algorithm follows from the decomposition we can give of each quantum state
into its conditional amplitudes. Moreover, the algorithm makes n+1 queries. A follow up question
is whether we can do better than n+ 1 queries.

2.3 State synthesis algorithms with fewer queries

Can we do better than n+ 1 queries?

Theorem 3 (Irani, Natarajan, Nirkhe, Rao, Yuen [2]). There exist solutions for the State Synthesis
Problem that use only a constant number of queries. In particular:

• There exists a 1 query solution to SSP, but approximation error is O(1
poly(n)), algorithm runs

in poly(n) space, but is not time efficient. Unities {A0, A1} require exponential amount of
time to implement on a quantum computer.

• There is also a 2 query poly(n) space algorithm with exp(−Ω(n)) error, also not time efficient.

Open question. Can we make the algorithms from [2] time-efficient? Separately, can we improve
the 1-query algorithm to have inverse exponential error (or prove some lower bounds)?

Remark. If we are allowed unlimited space, a 1-query solution to SSP is very easy! Essentially,
the idea is to use one call to the oracle to extract the entire classical description of the desired
quantum state. This uses a trick inspired by the Bernstein-Vazirani algorithm.

Consider a state |ψ⟩ =
∑

x αx|x⟩. Let m = 2n · poly(n), and let Zψ ∈ {0, 1}m denote the classical
description of |ψ⟩ (in other words, one simply writes out all the amplitudes αx in binary up to
poly(n) precision). Now we can encode |ψ⟩ into a classical function fψ : {0, 1}m → {0, 1} as

fψ(y) = ⟨y, Zψ⟩ mod 2

for all y ∈ {0, 1}m, where ⟨y, Zψ⟩ = y1Zψ,1 + y2Zψ,2 + · · · + ymZψ,m. In other words, fψ encodes
every single inner product with the string Zψ.

The Bernstein-Vazirani algorithm [3] allows a quantum algorithm to make one query to fψ in
superposition to extract the entire string Zψ: first, initializem qubits into the uniform superposition
2−m/2

∑
y∈{0,1}m |y⟩. This can be done by starting with the all zeroes state |0 · · · 0⟩ and applying

5

the Hadamard gate H to each qubit. Then, query the phase oracle corresponding to fψ. This
results in the state

2−m/2
∑
y

(−1)fψ(y)|y⟩ = 2−m/2
∑
y

(−1)⟨y,Zψ⟩|y⟩ .

Then, apply the Hadamard gate to each qubit again. This performs the Fourier transform to obtain
|Zψ⟩.

Given this, there exists a universal unitary A which takes as input |Zψ⟩ ⊗ |0 · · · 0⟩ and outputs
|ψ⟩ ⊗ |junk(ψ)⟩ where |junk(ψ)⟩ is some residual “junk” state that depends on |ψ⟩. This unitary
A might be extremely complicated, but the important thing is that it is a fixed unitary.

Thus, putting everything together our synthesis algorithm looks like the following:

|0⟩ H

Ofψ

H

A

|ψ⟩

|0⟩ H H ...
...

...
... |junk(ψ)⟩

|0⟩ H H ...

This algorithm clearly uses exponentially many qubits, but only makes one query to an oracle.

References

[1] Scott Aaronson (2016). Lecture notes for the 28th McGill Invitational Workshop on Compu-
tational Complexity. arxiv preprint arXiv:1607.05256.

[2] Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, Henry Yuen (2021). Quantum
search-to-decision reductions and the state synthesis problem. arxiv preprint arxiv:2111.02999.

[3] Ethan Bernstein and Umesh Vazirani (1997) Quantum Complexity Theory. SIAM Journal on
Computing, Vol. 26, No. 5: 1411-1473.

[4] Gregory Rosenthal (2021) Query and Depth Upper Bounds for Quantum Unitaries via Grover
Search. arxiv preprint arXiv:2111.07992.

6

