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1 Generalized Measurements

We’ve previously discussed standard basis measurements. Recall that if you have a d-dimensional
state |1) and you measure in the standard basis, then the probability of an outcome a € [d] is

= |{a 2.
llzlg[a] = [(aly)]

However, there are more general kinds of measurements that allow us to measure in a basis other
than the standard basis. We call these measurements projective measurements.

A set of matrices M = {My,..., My} is a k-outcome projective measurement if each M, is a
projector and My + --- + My = I, the identity matrix. The probability of obtaining outcome
a € [k] when measuring a state |¢)) with projective measurement M is defined to be (¢|Mg|¢) =

Tr(Ma|tp)9])-

For example, if we want to measure in the orthogonal basis {|b;)}, an orthogonal basis for C,
then the corresponding projective measurement would be M = {M,}qc(q where M, = [bg)ba|- A
projective measurement of this form can be implemented using a unitary transformation plus a
standard basis measurement in the following way: first, apply a unitary U to [¢)) where U is a
unitary that maps |b,) to the standard basis vector |a). Then measure Ul) in the standard basis.
We have that the probability of obtaining outcome a is equal to

(alU1$)* = |{Bal) [

which is the same as if you directly measured |¢) using the projective measurements {|b,)ba|}a-

1.1 Positive Operative Value Measure (POVM)

The is an even more general type of measurement we can perform on a quantum state i) € C.
Suppose we do the following:

e Append a qubit to form the state |1)) ® |0).

e Measure the enlarged system [¢)) ® |0) using a projective measurement M = {My,..., My}
that acts on the larger space C¢ @ C2.

The probability of obtaining outcome a € [k] is, according to the foregoing discussion:

Pra] = (| ® (0]) Ma (|¢) ©10)) -



We can write with this probability in terms of |¢)) and some other matrix Q,. We label the systems
in C? and C? as A and B, respectively, and “bring out” the |1)). We can rewrite our final outcome
probability equation as

Pra] = ((¢[4 @ (0p) Ma ([¢) 4 ®0) 5)
= (¢4 (Ta @ (0]g) Mo (I ® 0) g) [¢0)
= (Yl4 Qal¥) o

where we’ve defined (), to be the matrix

Qa = (Ta® (0[g)Ma(I4 ©[0)5)[¢) 4 -
Note that this is a matrix that acts on the A system only. In other words, @, is a d X d matrix.

One way to understand this is that we can visualize M, as a box with two “wires” that transforms
an input in the A ® B space into an output in that same space. Each of these two wires acts on
one of these two spaces.
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The operator @, can be thought of us “capping” the B wire (by multiplying it by the qubit vector
|0)) of M, so that the resulting operator takes inputs from the A space and produces outputs in
the A space.
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Another way of thinking about @), is that, in the appropriate basis, it is the upper left block of Mj:

= ()
The set of matrices @ = {Q,} formed in this way from the projective matrices {M,} is called
a Positive Operative Value Measure (POVM). More formally, a k-outcome POVM is a set QQ =

{Q1,...,Qk} of matrices such that @, is PSD for all a € [k] and >, Qq = I. The probability of
obtaining outcome a when measuring [1) is equal to (¢|Qq ).
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2 Continuous POVMs

So far measurements only have finitely many outcomes. What if we want to talk about measure-
ments that return a value from an infinite, or even continuous, set? For example, one can imagine
performing a measurement on a particle to determine its location. We would expect a real number
out.

Let © be an outcome space (which is potentially infinite) with a measure dz, which intuitively is
a way of assigning numbers to various region within the space (such as length, area, volume, etc.
depending on dimension). Then a continuous POVM over € is a collection of matrices Q = {Qz }zcq
such that each @), is PSD and

/ Q.dz=1.

We can compare this to its discrete POVM counterpart, > Q. = I.

Suppose we measure a state |¢) with a continuous POVM Q. If € is an infinite space, such as the
real line R, then intuitively we expect the probability of obtaining any specific outcome x € 2 to be
0 (just like how the probability of sampling any specific real number from the Gaussian distribution
is 0); instead we measure the probability of obtaining an outcome in a (measurable) region S C Q:

Prfo € 5] - /S (] Q [) da

Furthermore, suppose we have a function f : 0 — R and we want to determine the average value
of f if we measure a state 1), obtain value z € , and evaluate f(x):

Ejgy 1 ()] = /Q (] Qo ) [(x) da

3 Pure State Tomography

Recall that we’ve previously discussed a simple tomography algorithm for mixed states; it has
sample complexity O(d®) where d is the dimension. We will now discuss an algorithm for pure
state tomography that is more efficient: it only requires O(d) copies of the input state. This comes

close to the lower bound of €2 ( ) that we proved.

Suppose we are performing tomography on d-dimensional pure states. Define the outcome space
Q to be S(C?), the set of unit vectors in C¢. This is naturally endowed with the Haar measure,
which we denote by df. Define the continuous POVM Q = {Q)) }9)eq as follows:

ek (ke d—1
Q= oo (")

Note that there is a matrix Qg for every [0) € C9, and the matrix acts on the space (C%)®*. The
matrix Qg is clearly PSD, and furthermore

k+d-— ®k k+d-— P;};cm Sym
= — L LR— o Yy
/Qg do = ( )/\9 0)®F dg = ( L )Tr(PSym) o
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where we used our formula for integrating |#)(#|®* over the Haar measure. One might be worried
that this is not a valid continuous POVM because the integral is not the identity matrix. However,
for all intents and purposes it is, because we are only going to measure states of the form \w)®k,
which is a member of the symmetric subspace Sym(d, k), for which the projection Ps,};cm 1s effectively
the identity matrix. Thus we can treat @) as a valid continuous POVM.

The algorithm. Given |¢>®k for some [1)) € C?, we perform the continuous POVM @ on it to
obtain an outcome |0) € C?. Ideally, this outcome should be equal to |)) but it won’t be exactly.
How close of an estimate is it? We can measure this by considering the squared overlap between
|¥) and |#). Define the function f(|6)) = |(0]1)|* where |¢)) is the unknown state. We want to
know what f(]|6)) is on average. According to our formula:

E[f@)] - | <1/1|®kQ|9 |¢>®’“f(\9>)d9

k+d— .
= ( f \®k \9 0|®k> [p)YEF - (0]4) % df (Definition of Qg))
- <k+Z 1> |®k+1 ’9>< |®k+1> |¢>®k+1 a0
= <k+z 1> |®k+1 /’9 9|®k+1 d0) |¢>®k+1

psym
= (k e 1> |®/LCH "a ]sg;rni |¢>®k+1 (Formula for integral)
k Tr(Pyiq)
1

— (k + Z (: 1 61i> (Dimension of ijkril)

(k+d-1! (k+Dl(d-1)!

k:!(d ) (k+ d)!
k+1
k+d’

Suppose we set k = d/e. Then this quantity is 1 — O(e), which means that on average the output
of the tomography algorithm will have high overlap with the unknown input state |¢).
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