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1 Overview

In the last lecture we talked about the idea of pseudorandom quantum states (PRS) and presented
a construction of PRS, assuming the existence of pseudorandom functions (PRF) from classical

cryptography.

In this lecture we talk about how the landscape of different cryptographic primitives are organized,
and then discuss one cryptographic application of PRS.

2 Landscape of Cryptography

Over the last four decades, computer scientists have developed a rich understanding of how different
complexity assumptions, cryptographic primitives, and cryptographic tasks relate to each other.
A complexity assumption is an assumption about computational complexity classes. The most
important complexity assumption is the famous P # NP conjecture. This is a holy grail of
computer science and mathematics, and it appears that we are very far from being able to settle it
one way or another. However the prevailing belief is that P is indeed different from N P.

A cryptographic primitive is a fundamental object that turns out to be extremely useful in a variety
of cryptographic settings. In this context, we think of objects such as pseudorandom functions
(PRF), pseudorandom generators (PRG), and one-way functions (OWF) as being cryptographic
primitives. Pseudorandom states (PRS) are an example of a new kind of cryptographic primitive.

A cryptographic task is a higher-level task that you would naturally want to perform, such as
encryption, or digitally signing a message, or performing a distributed computation in a private
manner. There is a dazzling array of different cryptographic tasks one might want to perform. There
are two broad categories of tasks that people often consider: private-key cryptography and public-
key cryptography. Private-key cryptography involves things like encryption where both sender and
receiver share a secret key that is unknown to anyone else. Public-key cryptography is about harder
tasks like performing encryption using a public key, that can only be decrypted using a private key
(think RSA).

The following diagram illustrates the known relationships between them. An arrow from A to B
indicates that “A implies B”. If there is no arrow from B to A, that indicates that it is unknown
(and indeed, unlikely) that B implies A.
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PRF, PRG, and OWF are equivalent primitives, meaning if you can build one then you can build the
others. Private-key cryptography tasks are all equivalent to the existence of PRG/PRF/OWFs. In
other words, one can construct private-key cryptosystems using OWF'. Conversely, if you construct
a (classical) private-key cryptosystem, it must've used a PRG/PRF/OWF somewhere inside (even
if you didn’t use one explicitly!).

The same is true for public-key cryptosystems — they must all use OWFs — but it is not known
how to construct public-key cryptosystems from OWEFs only. In fact, it is believed that public-key
cryptosystems necessarily require (in a sense) harder assumptions than the existence of OWFs [5].

All of the aforementioned things — primitives and private/public-key cryptosystems — imply P #
NP. Tt is not known whether P # NP implies OWFs, though — this is a big open question in
complexity theory and cryptography.

Where does PRS fit in? From PRF/PRG/OWF, it is possible to build PRS as we saw in the
previous class. However, it is not known how to build a OWF/PRG/PRF from PRS, and in fact
it was recently shown that it potentially could be the case that P = NP (and thus OWFs do not
exist, and thus virtually all of classical cryptography is not possible), yet PRS still exist. What is
meant by “potentially could be the case” is that there is no black-box construction of OWF's from
PRS; this is a result of Kretschmer [4].

The concept of pseudorandom states was introduced by Ji, Liu and Song in 2018 [1]; they also
showed that PRGs could be used to construct PRS. However, the usefulness of PRS to achieve
cryptographic tasks was left as an open question. They presented an application to private-key
quantum money but that was it.

Recently, Ananth, Qian and Yuen [2] and Morimae and Yamakawa [3] showed that one can in fact
use PRS to build interesting private-key crypto primitives, without using any OWFs. To reconcile
this with the previous claim that private-key crypto necessitates the use of OWFs, in these PRS-
based cryptosystems, the honest parties must be able to manipulate quantum information and
transmit it to each other (whereas in the classical case, we assume that the honest parties can only
process classical information). Thus there is no contradiction.

What this shows is that, even in a hypothetical world where P = NP, not all hope is lost for
cryptography — provided that one has the ability to generate pseudorandom quantum states.



3 Candidate Construction of PRS generator that doesn’t (obvi-
ously) imply PRG/OWF

To illustrate how PRS could plausibly not involve any PRG/OWEF at all, consider the following
candidate construction of a PRS. Consider the generator G : {0,1}" — (C?)®™ where for every
k € {0,1}", the generator G interprets the input k as the description of a m-qubit circuit, and then
evaluates the circuit k on the all zeroes input |[0---0) to obtain an m-qubit pure state |iy).

If the depth of circuits k is not too small, then it is plausible that the output states |¢) are
pseudorandom. Proving this outright would beyond the reach of current techniques in cryptogra-
phy/complexity theory (in particular, this would imply that BQP # PSPACE, which would be
a monumental result). But the point is that, in this construction, there is no obvious PRG/OWF
lurking inside (especially since PRG/OWF's are defined to be efficiently computable by classical
algorithms).

4 Application of PRS: Bit commitment scheme

We now present an example of a cryptographic task, called bit commitment, that can be accom-
plished using pseudorandom states as a primitive. A bit commitment scheme (or just commitment
scheme, for short), is the cryptographic analogue of putting a secret in a sealed envelope, and then
opening it up later to verify the secret. For example, suppose Alice wants to make a prediction
(e.g. stock market will go up tomorrow); today she puts the prediction in the sealed envelope and
next day Bob can confirm the prediction. Intuitively, we want that Alice can’t change her mind
after she puts her prediction into the sealed envelope, but also that Bob can’t read the prediction
until Alice reveals the contents of the envelope.

In classical cryptography, bit commitment schemes can be constructed from pseudorandom gener-
ators (and thus one-way functions), but we want to show how pseudorandom states can also be
used to construct them.

Definition of a commitment scheme. Commitment scheme has two phases, called a commit
phase and a reveal phase. In each phase, Alice (who wants to commit to a bit) communicates
interactively with Bob (the verifier of the bit).

e Commit phase: Alice give a bit b (e.g. her prediction of whether the stock market will go up
or down) and, after some rounds of communication, Bob outputs the commitment ¢ (i.e. the
sealed envelope).
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e Reveal phase: After some rounds of communication, Bob either outputs a bit ¥’ (may not



necessarily be the same as Alice’s input b) or ERROR.

Alice Bob

bit V/,or ERROR

Correctness Property of a Commitment Scheme. If Alice and Bob are honest and follow
the commitment scheme according to how they’re supposed to, then the scheme should satisfy the
correctness property in that, after the commit phase and reveal phase, Bob should obtain the bit b
that Alice received with high probability. In other words, Bob sees the same bit that was put into
the sealed envelope.

Security Properties of Commitment Schemes. Now imagine that one of the parties are
dishonest, meaning that they’re trying to cheat the scheme. If Bob is being dishonest, then that
means he wants to be able to acquire the bit b before the reveal phase (i.e. open the sealed envelope
before the proper time). We say that a commitment scheme satisfies the hiding property if, given
the commitment ¢, Bob cannot tell whether ¢ was a commitment to b= 0 or to b = 1.

If Alice is being dishonest, then that means she wants to be able to trick Bob to output an
arbitrary bit b that’s chosen after the commit phase, but before the reveal phase. In the stock
market example, this is as if Alice, after learning the stock market crashed, tries to convince Bob
that she had predicted it crashed beforehand (even though she might’ve predicted otherwise). We
want the commitment c after the commit phase to be binding, meaning that Alice can’t change her
mind without Bob realizing that she’s cheating.

We say that a commitment scheme is secure if it satisfies both hiding and binding properties. You
might ask, what about the situation when both Alice and Bob are being dishonest? In that case
there’s no honest user to “protect”, so we just ignore that situation.

In more detail, the security properties are defined as follows:

e (Computational) Hiding: For Honest Alice, Cheating Bob.
Let ¢g be commitment if Alice commits to b = 0. Let ¢; be commitment if Alice commits
to b = 1. Then the (computational) hiding property is satisfied if for all polynomial-time
distinguishers D,
Pr[D(co) = 1] = Pr[D(¢1) = 1] .

e (Statistical) Binding: For Cheating Alice, Honest Bob. In the commit phase, Cheating
Alice may not necessarily commit to a bit, but she communicates with Honest Bob anyways
and at the end of the commit phase he outputs a supposed “commitment” c.

Cheating Alice —= Honest Bob
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In the reveal phase, we think of Cheating Alice as getting a bit b as input and her goal is to



try to convince Honest Bob to believe that ¢ is a valid commitment to b.
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Then we say that Let Ej denote the event that Cheating Alice convinces Honest Bob that
she committed to bit b. Then the (statistical) binding property is satisfied if no matter what
strategy Cheating Alice uses in the commit and reveal phases — even if it takes more than
polynomial time — the following inequality is satisfied:

Pr[Eo] + Pr[E1] <1+ negl

where negl denotes a negligible quantity (think of it as an arbitrarily small constant).

What this inequality is ruling out the scenario that Cheating Alice has a strategy where she
gets Honest Bob to create a “fake commitment” ¢, and then for the same commitment has
the option of convincing Honest Bob that it was a commitment to both b = 0 or b = 1 with
high probability! That would correspond to Pr[Ey| + Pr[E] =~ 2.

This inequality is saying that, whatever success probability Cheating Alice has to convince
Honest Bob that the commitment was to b = 0 comes directly at the expense of her success
probability of convincing him that it is to b = 1.

Commitments using PRGs. Before explaining how to construct a commitment scheme using
pseudorandom states, we first describe a famous classical solution to commitments that use pseu-
dorandom generators. This is called the Naor commitment scheme. There is no quantum involved
in this scheme.

The commitment scheme works as follows. Let G : {0,1}" — {0,1}™ for m = 3n denote a PRG.
Then Honest Alice and Honest Bob will follow this protocol.

e Commit Phase

b r <+ {0, 1}3"
Alice =~ Bob
c

1. Bob samples a uniformly random string r < {0,1}3" and sends it to Alice.

2. Alice pick a random key k < {0,1}" and send commitment ¢ = G(k) @ br, where br
denotes the all zeros string if b =0 and r if b = 1.



e Reveal Phase
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1. Alice sends k,b to Bob.

2. If b = 0, check if ¢ = G(k). If b = 1, check if ¢ = G(k) & r. If the check passed, then
Bob outputs . Otherwise, output ERROR.

References

[1] Ji, Z., Liu, Y. & Song, F. Pseudorandom quantum states. Annual International Cryptology
Conference. pp. 126-152 (2018)

[2] Ananth, P., Qian, L. & Yuen, H. Cryptography from Pseudorandom Quantum States. ArXiv
Preprint ArXiv:2112.10020. (2021)

[3] Morimae, T. and Yamakawa, T., 2021. Quantum commitments and signatures without one-way
functions. Cryptology ePrint Archive. (2021)

[4] Kretschmer, W. Quantum pseudorandomness and classical complexity. ArXiv Preprint
ArXiv:2103.09320. (2021)

[5] Impagliazzo, R. and Rudich, S. Limits on the provable consequences of one-way permutations.

In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (STOC)
pp. 44-61 (1989).



