
Oracle Separation of BQP and the Polynomial Hierarchy

Halley Goldberg and Shi Hao Liu

December 6, 2019

1 Introduction and Motivation of the Subject

This survey addresses the relationship between BQP, the class of problems efficiently solvable by quantum
computers, and the polynomial hierarchy (‘PH’), a classical generalization of P and NP. In 2018, Ran Raz
and Avishay Tal proved the existence of an oracle O relative to which BQP * PH [6]. This was a major
breakthrough, as the existence of such an oracle had been an open question since the early days of quantum
computing. Their work builds upon prior work of Scott Aaronson, who first suggested a variant of O as a
candidate for such a separation. We aim to give a readable survey of the work leading up to and concepts
involved in Raz and Tal’s result.

Before getting into the specifics of the proof, we ought to explain why the question it answers is interesting
and worthwhile to begin with. Some may feel that the relationship between BQP and PH relative to an
oracle doesn’t tell us much about their relationship in the actual, unrelativized world. It is well-known that
oracle results can seem contradictory; for example, there exist oracles relative to which P 6= NP as well as
oracles relative to which P = NP. Further, even if BQP * PH is true in the unrelativized sense, we are
unlikely to have a proof of it anytime soon, for if we prove that, we have also proved that P 6= PSPACE.

Aaronson explains why oracle-relative results of this kind are worth pursuing nonetheless [1]. First of all, he
argues that the so-called ‘query complexity’ model is well-motivated in its own right, as it does represesnt
a legitimate sense in which one kind of computation can have capabilities surpassing those of another.
Knowledge as to what classical resources are needed to simulate quantum computation is interesting in
and of itself. On a more pragmatic note, results in query complexity often serve as stepping-stones to
more fundamental developments in complexity theory, and this is especially true in the history of quantum
complexity theory.

So what is the significance of Raz and Tal’s result in particular? For one, it is consistent with quantum
computers exceeding classical computers, in terms of what they can efficiently compute, even in the case that
P = NP. In other words, it is evidence that quantum computing could ‘survive a collapse of PH’. Another
upshot of the result is that it could open up a new place to look for quantum algorithms. This holds even if
NP-complete problems lie outside of BQP. If BQP is not contained in PH, then we certainly need not limit
ourselves to NP-intermediate problems, since quantum computation might be suitable for different kinds of
problems lying outside of PH altogether [1].

1

2 Definitions and Results

We begin by recalling the main complexity classes involved in Raz and Tal’s paper: PH, BQP, and AC0.
These definitions are standard and may be found in any textbook on complexity theory.

PH: The polynomial hierarchy, or PH, is a generalization of P and NP. Formally, for i ≥ 1, a language L is
in Σpi iff there exists a polytime TM M and a polynomial q such that for all x,

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|)...Qiui ∈ {0, 1}q(|x|)M(x, u1, ..., ui) = 1,

where Qi denotes ∀ or ∃ depending on whether i is even or odd.

Then PH = ∪iΣpi .

BQP: Bounded-error quantum polynomial time, or BQP, is the set of problems solvable by a quantum
computer in polynomial time. Formally, a language L is in BQP iff there exists a polynomial-time uniform
family of quantum circuits {Qn | n ∈ N} such that:

1. for all n ∈ N, Qn takes n input qubits and outputs 1 bit

2. for all x ∈ L, Pr(Q|x| accepts x) ≥ 2
3

3. for all x /∈ L, Pr(Q|x| rejects x) ≥ 2
3

AC0: A language L is in AC0 iff it can be decided by a family of Boolean circuits {Cn | n ∈ N}, where
each Cn has poly(n) size and constant depth. Moreover, each Cn consists of unbounded fan-in AND and
OR gates and NOT gates occurring only at the leaves.

Now, let UN be the uniform distribution over {±1}N , and let D be some other distribution over {±1}N . We
say that an algorithm A distinguishes between UN and D with advantage ε iff

|Prx∼UN
[A accepts x]− Prx′∼D[A accepts x′]| = ε

That is, the difference between the probabilities of A accepting a sample drawn from UN and a sample drawn
from D respectively is equal to ε.

Finally, we mention that much of the paper takes place in the “black box” model, also known as the “query
complexity” model. In this model, the input x ∈ {±1}N is accessed via queries to a black box. In particular,
classical algorithms are allowed to apply the mapping i → xi for unit cost, where xi is the ith bit of x.
Quantum algorithms are allowed to apply the unitary transformation |i, w〉 → xi |i, w〉 for unit cost; that is,
the bit xi is encoded in a quantum state as its phase.

The main results of Raz and Tal’s paper are as follows:

Theorem 1.1. There exists a distribution D over {±1}2N such that: (i) there exists a quantum algorithm
that makes 1 query to the input and distinguishes between U2N and D with advantage Ω(1/ logN), and (ii)
no AC0 circuit distinguishes between U2N and D with advantage better than polylog(N)/

√
N .

2

Theorem 1.2. There exists a distribution D over {±1}N such that: (i) there exists a quantum algorithm that
makes polylog(N) queries to the input and distinguishes between U2N and D with advantage 1− 2−polylog(N),
and (ii) no AC0 circuit distinguishes between U2N and D with advantage better than polylog(N)/

√
N .

Corollary 1.5. There exists an oracle O such that BQPO * PHO.

Informally, Theorems 1.1 and 1.2 state that there exists a distribution D that is easy for a quantum algorithm
to distinguish from uniform, but hard for every classical circuit to distinguish. Theorem 1.2 is obtained from
Theorem 1.1 through standard amplification techniques, which we do not cover here. See [6] for a proof.
Corollary 1.5 is obtained from Theorem 1.2 as explained in the next section. After that section, we show
how Raz and Tal proved Theorem 1.1.

3 Reframing the Problem

Claim . Theorem 1.2 implies Corollary 1.5.

We began this survey by characterizing our problem as an oracle separation problem: can BQP machines
with access to a certain oracle solve problems that PH machines with access to that same oracle cannot
solve? In this section, we sketch some of the concepts involved in reframing this question in terms of AC0

circuits, as in Theorems 1.1 and 1.2. More formal proofs of the claim can be found in [4] as well as the
appendix to [6].

One key idea was noticed in the early 1980s by Furst, Saxe, and Sipser, among others [5]. Let N = 2n, let
xn ∈ {±1}2N , and suppose we want to compute some Boolean function f : {±1}2N → {±1}.

If there exists a PH oracle machine M taking input 1n and computing f(xn), then there exists an AC0

circuit taking input xn and computing f(xn).

The high-level reasoning behind this statement is as follows. Given fixed M , n, and f , our goal is to construct
a Boolean circuit computing f(xn). We first convert M to another PH machine M1 that only makes one
oracle query, which can be done without loss of generality. Then, we build up a Boolean circuit corresponding
to the computational branches of M1. That is, we convert the alternating universal and existential quantifiers
into alternating layers of AND and OR gates respectively, and we take the oracle’s responses to all possible
queries as input to the circuit at its leaves [5]. Note that since the length of the input xn is exponential in
n, M can only access indices of xn via oracle queries. The size of the associated circuit is quasipolynomial
in N .

How does the above equivalence apply to Raz and Tal’s result? Well, for each n ∈ N, draw xn from U2N

with probability 1/2, and draw xn from D with probability 1/2. Now define the language

L = {1n | xn was drawn from the distribution D}

On one hand, Theorem 1.2 (i) implies that there exists a BQP oracle machine deciding L correctly on all
but finitely many inputs. This machine essentially acts according to the quantum algorithm given in section
6 below [6]. Theorem 1.2 (ii) states, on the other hand, that no AC0 circuit can distinguish well between
U2N and D. By the equivalence of PHO and AC0, the probability that a fixed PH oracle machine decides L
correctly on input 1n must be low. The last remaining step is to show that the probability over oracles O

3

that a PHO machine decides L correctly for all n is equal to 0. We omit this analysis, which can be found
in the appendix to [6].

4 The Distributions

Intuitively, the goal is to come up with a distribution D such that D and U2N can be told apart by a
quantum algorithm but not by classical Boolean circuits. Aaronson was the first to suggest the appropriate
distribution [1], though Raz and Tal alter it in some ways to suit their subsequent analysis.

Let N = 2n for n ∈ N, and let ε = 1/(24 lnN). We start by defining distributions G over R2N :

1. Independently sample x1, ..., xN ∼ N (0, 1) (ie. the normal distribution with mean 0 and variance 1)
and let x = x1, ..., xN .

2. Let y = HN · x, where HN is the Hadamard transform.

3. Output z = (x, y).

From G, define the distribution G′ over R2N as follow:

1. Sample z ∼ G.

2. Output
√
εz.

Observe that G′ can be equivalently defined by following the definition of G but sample x1, ..., xN from
N (0, ε) instead.

From G′, we define another distribution D:

1. Sample z from G′.

2. Replace each zi with trnc(zi), where trnc is a function that truncates its input to the interval [−1,+1],
i.e. trnc(zi) = min (1,max(−1, zi)).

3. Set z′i = 1 with probability 1+trnc(zi)
2 and z′i = −1 with probability 1−trnc(zi)

2 .

4. Output z′ ∈ {±1}2N .

Note that in Aaronson’s original distribution [1], the main differences from D were that ε = 1 and each z′i
was taken to be sgn(zi) ∈ {±1}, where sgn denotes the sign function. He called it a ‘forrelated’ distribution
(ie. ‘Fourier’ + ‘correlated’), since y is tightly correlated with the Fourier distribution of x, though x and y
individually are both uniformly random.

4

5 Multilinear Functions

In this section we describe some properties about multilinear function. Along the way we will see how these
type of functions correlates to AC0 circuits.

It is well-known that every AC0 circuit can be well-approximated by multilinear (low-degree) polynomials
over R. For every A : {−1, 1}m → {−1, 1}, there is an unique multilinear real polynomial

Ã(x) =
∑
S⊆[m]

Â(S)
∏
i∈S

xi

called the multilinear extension of A, that agrees with A over {−1, 1}m. The terms Â(S) are called the
Fourier coefficients of f . As a side note, truncating Ã to its degree-k parts for some small k gives us a
low-degree approximation of A. To analyze AC0 circuits, it is therefore sufficient for us to analyze the
behaviours of their multilinear extensions. For any Boolean circuit A : {±1}2N → {±1} of quasi-polynomial
size and constant depth, we will ambiguously denote by A both the circuit itself and its multilinear extension.

Observe that, by the linearity of expectation, A(~0) = Â(∅) = Eu∼U2N
[A(u)]. To show that A cannot

distinguish between D and the uniform distribution U2N , we need to prove that

Ez∼D[A(z)] ≈ Eu∼U2N
[A(u)] = A(~0)

However, it is enough for us to show that
∣∣∣Ez∼G′ [A(z)]−A(~0)

∣∣∣ is small, due to the following claim.

Claim. Any multilinear function f : [−1, 1]2N → [−1, 1] has very similar expectation under G′ and under
D.

In fact, any multilinear function has the same expectation under D and the truncated variant of G′. That
is,

Ez′∼D[A(z′)] = Ez∼G′ [A(trnc(z))]

Therefore, the above claim suggests that the quantity |Ez∼G′ [A(z)−A(trnc(z))]| is small. To state this more
precisely, consider the following more generalized claim.

Claim 5.3. Let 0 ≤ p, p0 such that p+ p0 ≤ 1. Let F : R2N → R be a multilinear function that maps {±1}
to [−1, 1]. Let z0 ∈ [−p0, p0]2N . Then,

Ez∼G′ [|A(trnc(z0 + pz))−A(z0 + pz)|] ≤ 8N−2

This allows the subsequent analysis to essentially ignore the fact that we truncated to the interval [−1, 1]
in the definition of D. We omit the proof of Claim 5.3, for it is long and rather straightforward. Interested
readers may refer to Section 5 of [6].

6 The Quantum Algorithm

Claim . There exists a quantum algorithm making 1 query and running in time O(logN) that distinguishes
D from U2N with advantage Ω(1/ logN).

5

Informally, we would like to show that distinguishing U2N and D is easy for quantum circuits. This is part
(i) of Theorem 1.1. Raz and Tal did not give a quantum algorithm explicitly in their paper, but they used
properties of an algorithm first developed by Aaronson in [1] and subsequently improved by Aaronson and
Ambainis in [2]. The algorithm begins in the state |0〉⊗n |0〉 and proceeds as follows:

1) Apply the Hadamard gate H to the last (control) qubit.

|0〉⊗n |+〉 = 1√
2
|0〉⊗n |0〉+ 1√

2
|0〉⊗n |1〉

2) Apply H to the first n qubits.

1√
2N

∑
i∈[N]

|i〉 |0〉+
1√
2N

∑
i∈[N]

|i〉 |1〉

3) Query x in superposition conditioned on the control qubit being |0〉, and query y conditioned on the
control qubit being |1〉.

1√
2N

∑
i∈[N]

xi |i〉 |0〉+
1√
2N

∑
i∈[N]

yi |i〉 |1〉

4) Apply H to the first n qubits conditioned on the control qubit being |1〉.

1√
2N

∑
i∈[N]

xi |i〉 |0〉+
1√
2N

∑
i∈[N]

∑
j∈[N]

yjHij |i〉 |1〉

Finally, measure this state in the {|+〉 , |−〉} basis, accepting iff the outcome is |+〉 [2].

Pr[outcome |+〉] =
∑
i∈[N]

(
1

2
√
N
xi +

1

2
√
N

∑
j∈[N]

(yjHij

)2

=
1

4N

∑
i∈[N]

(
x2i + 2

∑
j∈[N]

Hijxiyj +

(∑
j∈[N]

yjHij

)2)

=
1

2
+

1

2N

∑
i∈[N]

∑
j∈[N]

Hijxiyj

Define ϕ(xy) := 1
N

∑
i∈[N]

∑
j∈[N]Hijxiyj , so Pr[outcome |+〉] = 1+ϕ(x,y)

2 . Note that ϕ is a multilinear
function.

Now that we have defined the quantum algorithm, we need to show that it successfully distinguishes between
(x, y) drawn from U2N and (x, y) drawn from D, as stated in the claim above.

First of all, it is clear that E(x,y)∼U2N
[Φ(x, y)] = 0, by linearity of expectation and the fact that E[xiyj] = 0

in the uniform distribution. So when (x, y) is drawn from the uniform distribution, the quantum algorithm
returns each possible output with probability 1

2 .

It remains to show that when (x, y) is drawn from the distribution D, we have E[ϕ(x, y)] ∈ Ω(1/ logN). Raz

6

and Tal begin by showing this in the case where (x, y) is drawn from G′, as G′ is a much ‘nicer’ distribution
to analyze than D. They then use the definitions of G′ and D, as well as some properties of multilinear
functions (see the previous section), to give a lower bound in the case of D.

In particular, since E(x,y)∼G′ [xiyj] = ε ·Hij , it is straightforward to show that E(x,y)∼G′ [ϕ(x, y)] = ε. Then:

E(x′,y′)∼D[ϕ(x′, y′)] = E(x,y)∼G′ [ϕ(trnc(x), trnc(y))] (by multilinearity of ϕ)

≥ E(x′,y′)∼D[ϕ(x′, y′)]− |E(x′,y′)∼D[ϕ(trnc(x), trnc(y))− ϕ(x′, y′)]| (by definition of G′,D)

≥ ε/2 ∈ Ω(1/ logN) (by multilinearity of ϕ)

As a corollary, we get the claim that opens this section [6].

7 The Circuit Lower Bound

We continue our discussion on AC0 circuits. In this section, we wish to establish the following:

Theorem 7.4. Let A : {±1}2N → {±1} be a Boolean circuit of size s and depth d. Then,∣∣∣Ez′∼D[A(z′)]−A(~0)
∣∣∣ ≤ 32ε(c log s)2(d−1)N−1/2

As an immediate consequence, we get the following corollary, which is the wanted result:

Corollary 7.5. Let A : {±1}2N → {±1} be a Boolean circuit of size exp
(

logO(1)(N)
)

and depth O(1).

Then,
|Ez′∼D[A(z′)]− Eu∼U2N

[A(u)]| ≤ polylog(N)/
√
N

Before we move on, let us note some property of Ĝ(S, T) = E(x,y)∼(G)

[(∏
i∈S xi

)
·
(∏

j∈T yj

)]
, the moments

of G.

Claim 4.1. Let S, T ⊆ [N] and i, j ∈ [N]. Let k1 = |S|, k2 = |T |. Then,

1. Ĝ({i}, {j}) = N−1/2 · (−1)〈i,j〉

2. Ĝ(S, T) = 0 if k1 6= k2

3.
∣∣∣Ĝ(S, T)

∣∣∣ ≤ k! ·N−k/2 if k = k1 = k2

4.
∣∣∣Ĝ(S, T)

∣∣∣ ≤ 1

The first item is an entry in the covariance matrix of G, which is

(
IN HN

HN IN

)
. The second item follows

from Isserlis’ Theorem, stating that E[zi1 ...zi2k−1
] = 0 and E[zi1 ...zi2k] =

∑∏
E [zirzi`] for any k ≤ N and

distinct i1, ..., i2kin[2N], where
∑∏

means summing over all distinct ways of partitioning zi1 , ..., zi2k into
pairs and each summand is the product of the k pairs. The third item follows from the fact that there are

7

https://en.wikipedia.org/wiki/Isserlis'_theorem

k! partitions of elements of S and T into pairs such that each pair contains exactly one variable from each
half, and the fact that the covariant of each such pair is ±N−1/2. The last item can be easily proven using
Cauchy-Schwarz inequality.

To get a picture of how the analysis would go, let us unpack the quantity Ez′∼D[A(z′)]−A(~0).

Ez∼G′ [A(z)]− Eu∼U2N
[A(u)] =

∑
S⊆[2N]

Â(S)

(
Ez∼G′

[∏
i∈S

zi

]
− Eu∼U2N

[∏
i∈S

ui

])

=
∑

S⊆[2N],|S|≥1

Â(S) · Ez∼G′
[∏
i∈S

zi

]

=

N∑
`=1

∑
S⊆[2N],|S|=2`

Â(S) · Ez∼G′
[∏
i∈S

zi

]
(1)

=

N∑
`=1

∑
S⊆[2N],|S|=2`

Â(S) · ε` · Ĝ(S) (2)

Equation (1) follows from the second item in Claim 4.1. Since the third and fourth items in Claim 4.1 give us
a bound on Ez∼G

[∏
i∈S zi

]
, to obtain the result, it remains for us to get a bound on the Fourier coefficients

Â(S).

7.1 Tal’s Tail Bounds on Fourier Coefficients

The analysis made extensive use of the tail bounds on the Fourier coefficients of multilinear extensions of
any quasi-polynomial size and constant depth circuit.

Lemma 7.1. There exists a universal constant c > 0 such that the following holds. Let A : {±1}2N → {±1}
be a Boolean circuit with at most s gates and depth at most d. Then, for all k ∈ N,∑

S⊆[2N]:|S|=k

∣∣∣Â(S)
∣∣∣ ≤ (c log s)(d−1)k

The quantity translates to (polylog(N))k when s is quasi-polynomial in N and d is constant. This bound
was proven by Tal in 2014 in [7] and it was primarily motivated by the proving Theorem 7.4. This is the
first place where the Raz and Tal paper goes substantially beyond the work of Aaronson and others. It is
tempting to take the bounds in Lemma 7.1 and Claim 4.1 and plug them into formula (2) derived above,
hoping to obtain the result directly. In fact, this is what they initially tried to do. Unfortunately, the bound
fails to give us the desired result when we add in the terms corresponding to large k.

7.2 Random Walks

Instead, Raz and Tal took a different approach, inspired by the work [3] of Chattopadhyay, Hatami, Hosseini,
and Lovett. We view z ∼ G′ as the result of a random walk 1√

t
·
(
z(1) + ...+ z(t)

)
, where z(1), ..., z(t) ∼ G′ are

t vectors sampled independently from G′, for some t. One could check that the walk produces a distribution
having the same mean and variance as G′. The proof is then carried out using a hybrid argument. That is,
we define the i-th hybrid as Ht = 1√

t
·
(
z(1) + ...+ z(i)

)
, and show that, for each i = 0, ..., t− 1,

|E [A(Hi+1)]− E [A(Hi)]| ≤
δ

t
· polylog(N)

8

for some suitable δ which would give us the result.

7.3 Proving the Main Theorem

With the general ideas in mind, we finally proceed to the actual proof of the result. As described above,
we analyze the behaviour of A under each consecutive pairs of hybrids. We begin with a lemma that would
allow us to take care of the base case, where i = 0. For vectors R,Q ∈ R2N , define R ◦Q ∈ R2N to be their
point-wise product.

Claim 7.2. Let p ≤ 1/2. Let A : {±1}2N → {±1} be a Boolean circuit of size at most s and depth at most
d, such that

√
εp · (c · log s)d−1 ≤ 1/2. Let P ∈ [−p, p]2N . Then,∣∣∣Ez∼G′ [A(P ◦ z)]−A(~0)

∣∣∣ ≤ 3ε · p2 · (c · log s)2(d−1) ·N−1/2

Proof. Let q =
√
ε · p · (c log s)d−1 ≤ 1/2. Following a similar expansion as shown in the beginning of Section

7,

∣∣∣Ez∼G′ [A(P ◦ z)−A(~0)
]∣∣∣ =

∣∣∣∣∣∣
∑

∅6=S⊆[2N]

Â(S) ·

(∏
i∈S

Pi

)
· Ĝ′(S)

∣∣∣∣∣∣
≤

∑
∅6=S⊆[2N]

∣∣∣Â(S)
∣∣∣ · p|S| · √ε|S| · ∣∣∣Ĝ(S)

∣∣∣
=

2N∑
k=1

(√εp)k · ∑
S⊆[2N],|S|=k

(∣∣∣Â(S)
∣∣∣ · ∣∣∣Ĝ(S)

∣∣∣)

≤
2N∑
k=1

(√εp)k · (max
S:|S|=k

∣∣∣Ĝ(S)
∣∣∣) · ∑

S⊆[2N],|S|=k

(∣∣∣Â(S)
∣∣∣)

≤
2N∑
k=1

((√
εp
)k · (max

S:|S|=k

∣∣∣Ĝ(S)
∣∣∣) · (c log s)(d−1)k

)
(by Lemma 7.1)

=

N∑
k′=1

(
q2k
′
·
(

max
S:|S|=2k′

∣∣∣Ĝ(S)
∣∣∣)) (by Claim 4.1(2.))

=

bn/2c∑
k′=1

(
q2k
′
·
(

max
S:|S|=2k′

∣∣∣Ĝ(S)
∣∣∣))+

N∑
k′=bn/2c+1

(
q2k
′
·
(

max
S:|S|=2k′

∣∣∣Ĝ(S)
∣∣∣))

≤
bn/2c∑
k′=1

(
q2k
′
· k′! ·N−k

′/2
)

+
∑

k′=bn/2c+1

(
q2k
′
)

(by Claim 4.1(3. & 4.))

≤ 2 · q2 ·N−1/2 + 2 · qn+1 (since q ≤ 1/2)

≤ 3q2 ·N−1/2

The next claim takes care of the case for 1 ≤ 1 ≤ t − 1. Its proof makes use of the fact that AC0 circuits
are closed under restrictions.

9

Claim 7.3. Let p ≤ 1/4. Let A : {±1}2N → {±1} be a Boolean circuit of size s and depth d, such that√
εp · (c · log s)d−1 ≤ 1/4. Let z0 ∈ [−1/2, 1/2]2N . Then,

|Ez∼G′ [A(z0 + p · z)]−A(z0)| ≤ 12ε · p2 · (c · log s)2(d−1) ·N−1/2

Proof. The proof is based on (the brilliant technique of) random restriction. Intuitively, we want to reduce
this case to the case where i = 0, and apply Claim 7.2. We start by defining a distribution, Rz0 , for the
random restriction, which depends (only) on z0. A restriction ρ is sampled from Rz0 as follow: for each
entry i ∈ [2N],

ρi =

{
sng((z0)i) with probability |(z0)i|
∗ otherwise

Next, we will define a (random) vector z̃ from ρ for which we will use to compare with ~0. Though this is not
quite right – in truth, we will compare z̃ with ~0�ρ (that is, we set each coordinate i of ~0 on which ρi 6= ∗ to
be ρi instead). We can think of this as shrinking the dimension of the hypercube and shifting the “center”
to become ~0�ρ, thus allowing us to reduce the problem to Claim 7.2. We now make this precise.

Let ρ ∼ Rz0 . For any z ∈ R2N , define the vector z̃ = z̃(z, ρ) ∈ R2N to be

z̃i =

{
ρi if ρi ∈ {±1}
Pi · zi otherwise

where P ∈ [−2p, 2p]2N is defined by Pi = p · 1
1−|(z0)i| . Observe that each coordinate z̃i is independent of the

other coordinates, and its expected value is

Eρ∼Rz0
[z̃i] = |(z0)i| · sgn ((z0)i) + (1− |(z0)i|) · Pi · zi

= (z0)i + p · zi
Hence,

Eρ∼Rz0
[A (z̃)] =

∑
S⊆[2N]

Â(S) · Eρ∼Rz0

[∏
i∈S

z̃i

]

=
∑

S⊆[2N]

Â(S) ·
∏
i∈S

Eρ∼Rz0
[(z̃i)] (by independence)

= A(z0 + p · z)

Let z ∼ G′, then

|Ez∼G′ [A(z0 + p · z)]−A(z0)| =
∣∣∣Ez∼G′Eρ∼Rz0

[
A(z̃(z, ρ))−A(z̃(~0, ρ))

]∣∣∣
≤ Eρ∼Rz0

[∣∣∣Ez∼G′ [A(z̃(z, ρ))]−A(z̃(~0, ρ))
∣∣∣]

= Eρ∼Rz0

[∣∣∣Ez∼G′ [A�ρ(P ◦ z)]−A�ρ(~0)
∣∣∣]

Notice that A�ρ is again a multilinear function and how its A�ρ(~0) value, i.e. its “center” value, has shifted
because of the restriction ρ. This allows us to apply Claim 7.2, replacing A with A�ρ, and using the fact

that P ∈ [−2p, 2p]2N and the assumption
√
εp(c · log s)d−1 ≤ 1/4, we get,

≤ Eρ∼Rz0

[
3ε(2p)2 · (c log s)2(d−1) ·N−1/2

]
≤ 3ε(2p)2 · (c log s)2(d−1) ·N−1/2 (by averaging)

10

It is worthwhile to re-read the proof of Claim 7.3 to understand what is really going on and the point of
using the random restriction.

We conclude this section with the proof of Theorem 7.4, which sums up the results we have discussed so far
and completes the puzzle.

Proof (Theorem 7.4). The proof made use of Claim 7.3 about the random walk, Claim 5.3 about G′ versus
its truncated version, and the fact that the walk at each step remains within the subcube [−1/2, 1/2]2N with
high probability (this allows us to apply Claim 7.3!).

Let t = N be the number of steps in the walk and let p = 1/
√
t. Without loss of generality, assume that√

ε · (c · log s)d−1 ≤ 1
4 ·N

1/4 (for otherwise the inequality in the Theorem holds trivially), then

p ·
(√
ε · (c · log s)d−1

)
≤ 1

4
·N−1/4 ≤ 1/4

For 0 ≤ i ≤ t, let Hi be as defined in Section 7.2. Note that Hi

p
√
i
∼ G′, and for each j ∈ {1, ..., 2N},

(Hi)j ∼ N (0, p2iε). Let Ei be the event that Hi ∈ [−1/2, 1/2]2N . Using the bound for Gaussian distribution,

P[Ei] ≥ 1−
∑
j

P[|Hi| ≥ 1/2] (by union bound)

≥ 1−
∑
j

P[|N (0, ε)| ≥ 1/2]

≥ 1− 2N · e−1/(8ε) (by bounds on Gaussian)

≥ 1− 2N−2

Conditioned on Ei, we analyze the difference |E[A(trnc(Hi+1)) | Ei]− E[A(trnc(Hi)) | Ei]|.∣∣∣E[A(trnc(Hi+1)) | Ei]− E[A(trnc(Hi)) | Ei]
∣∣∣ ≤ ∣∣∣E[A(trnc(Hi+1)) | Ei]− E[A(Hi+1) | Ei]

∣∣∣
+
∣∣∣E[A(Hi+1) | Ei]− E[A(trnc(Hi)) | Ei]

∣∣∣
≤ 8 ·N−2 + 12ε · p2 · (c · log s)2(d−1) ·N−1/2

where the last inequality is obtained from applying Claim 5.3 to the first term (with z0 = Hi, p0 = 1/2 and
p = 1

√
t < 1/2, using the fact that Hi ∈ [−p0, p0]2N) and applying Claim 7.3 to the second term. Together,

since A(trnc(Hi+1)) +A(trnc(Hi)) ≤ 2,

|E[A(trnc(Hi+1))]− E[A(trnc(Hi))]| ≤ 8 ·N−2 + 12ε · p2 · (c · log s)2(d−1) ·N−1/2 + 2 · Pr
[
Ē
]

≤ 12 ·N−2 + 12ε · p2 · (c · log s)2(d−1) ·N−1/2

Finally, ∣∣∣Ez′∼D[A(z′)]−A(~0)
∣∣∣ ≤ t(12 ·N−2 + 12ε · p2 · (c · log s)2(d−1) ·N−1/2

)
= 12 ·N−1 + 12ε · (c · log s)2(d−1) ·N−1/2

≤ 32ε · (c · log s)2(d−1) ·N−1/2

8 Open Questions

In this section, we indicate some questions left open by Raz and Tal’s result.

11

1. Can we expand or generalize the class of problems that suffice for the separation? For example, does
Aaronson’s original distribution work? Raz and Tal give one instance of an oracle problem that can
be done in BQP and not in PH, but it would be interesting to see if there are more problems like this
and whether these problems have certain properties in common.

2. Can we adapt the methods to bear on the containment of NP in BQP? Whether this containment
would imply the collapse of PH is currently an open question, and many who believe the hierarchy
infinite would take such an implication as good evidence that NP * BQP. One target, suggested by
Scott Aaronson, would be to come up with an oracle relative to which NP ⊆ BQP but PH * BQP.
This would be an enlightening result, because it would tell us that any proof of the above implication
would necessarily be non-relativizing [1].

3. Can we come up with a relativized world in which P = NP but P 6= BQP? In other words, can the
notion that BQP survives a collapse of PH be demonstrated explicitly? This question was raised by
Lance Fortnow in a blog post following Raz and Tal’s result [8].

4. Is there a quantum analogue to NPBPP ⊆ BPPNP? Namely, is it true that NPBQP ⊆ BQPNP? [1]

5. The proof of this result relies on two crucial properties of AC0 circuits, namely the tail bound on
Fourier coefficients of their multilinear extensions (specifically, for sets of size 2) and the fact that they
are closed under restrictions. They argued that the result can be generalized to any class of functions
satisfying these two properties. One plausible such candidate is AC0[⊗], which stands for AC0 circuits

augmented with parity gates. It suffices to show that for all f in AC0[⊗],
∑
|S|=2 |f̂(S)| ≤

√
N

polylog(N)

in order to separate BQLogTime from AC0[⊗].

9 References

[1] S. Aaronson, “BQP and the polynomial hierarchy,” Proceedings of the 42nd ACM symposium on Theory
of computing - STOC 10, 2010.

[2] S. Aaronson and A. Ambainis, “Forrelation: A Problem that Optimally Separates Quantum from Classical
Computing,” Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing
- STOC 15, 2015

[3] E. Chattopadhyay, P. Hatami, K. Hosseini, and S. Lovett, “Pseudorandom Generators from Polarizing
Random Walks,” Electronic Colloquium on Computational Complexity, Report No. 15, 2018.

[4] B. Fefferman and C. Umans, “Pseudorandom generators and the BQP vs. PH problem,” 2010.

[5] M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the polynomial-time hierarchy,” 22nd Annual
Symposium on Foundations of Computer Science, 1981.

[6] R. Raz and A. Tal, “Oracle separation of BQP and PH,” Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, 2018.

[7] A. Tal, “ Tight Bounds on the Fourier Spectrum of AC0,” Electronic Colloquium on Computational
Complexity, Report No. 174, 2014.

[8] L. Fortnow, “BQP not in the Polynomial-Time Hierarchy in Relativized Worlds,” Computational
Complexity (Blog), 01-Jun-2018.

12

	Introduction and Motivation of the Subject
	Definitions and Results
	Reframing the Problem
	The Distributions
	Multilinear Functions
	The Quantum Algorithm
	The Circuit Lower Bound
	Tal's Tail Bounds on Fourier Coefficients
	Random Walks
	Proving the Main Theorem

	Open Questions
	References

