
Quantum Computing: Foundations to Frontier Fall 2018

Lecture 7

Lecturer: Henry Yuen Scribes: Phillip W.K. Jensen, Adrian She, Karan Grewal

1 Quantum Complexity Theory

Computational complexity theory is the study of the power of various computational resources:

• time

• space

• randomness

• interactivity

• communication

• quantumness

• non-determinism

and how these resources relate to each other. The types of questions you ask about these include:

• Does non-determinism help speed up computations?

• Can any problem that you solve using a small amount of space also be solved using a small
amount of time?

• Are quantum computers more powerful than classical computers?

Complexity theory gives precise and formal ways of asking these questions. An important concep-
tual tool is the idea of complexity classes. Complexity classes organize computational problems
into groups based on the resources required to solve those problems. For example,

P = polynomial time = {A problem is solvable in polynomial time if it can be solved in nc time
(for some constant c > 0 and n is the length of your input) by a deterministic Turing machine
(think computer program such as one written in Python)}.

Examples: Sorting, multiplying 2 integers, finding shortest paths between two points in a net-
work, primality testing.

NP = non-deterministic polynomial time = {set of all problems whose solutions you can check
in deterministic polynomial time using a classical computer. That is, it is easy to check if the
answer is correct, however, it may be nontrivial to get there.}

Examples: Traveling Salesman Problem (TSP), 3-SAT, factoring integers, graph isomorphism,
generalized Pokemon.

BPP = bounded error probabilistic polynomial time = {Set of problems you can solve using a
randomized computer program in polynomial time, where you have to get the right answer with
probability ≥ 2/3}.

1

Examples: Any problem in P, polynomial identity testing.

PSPACE = polynomial space = {set of all problems solvable using a deterministic computer
program that only uses polynomial bits of memory}.

Examples: Any problem in P, any problem in NP, generalized Donkey Kong, generalized Tic-
tac-toe.

EXP = exponential time.

Examples: Any problem in P, any problem in NP, generalized chess, Go.

Classical complexity landscape:

Figure 1: Classical complexity landscape. It is conjectured that BPP = P (in other words,
randomization does not allow one to solve problems significantly faster). However, the only proven
inclusion among the classes here is that BPP is contained in PSPACE.

BQP = bounded error quantum polynomial time = {problems that can be solved efficiently on
a quantum computer in poly time, and gets correct answer with probability ≥ 2/3}. Examples:
Factoring, simulating quantum systems, computing certain Knot invariants.

The biggest question in quantum complexity theory: Where does BQP sit relative to the clas-
sical complexity classes?

• Does BQP ⊆ BPP? We know that BPP ⊆ BQP.

• Does NP ⊆ BQP?

• What is the best classical upper bound on BQP?

2

2 Classical Upper Bounds on BQP

We would like to know if how quantum models of computation relate to classical models of compu-
tation. One of these questions is the following: are problems solvable using a quantum computer
in polynomial time also solvable using a classical computer with access to randomness? As numer-
ous people believe that quantum computers are more powerful than classical computers, this can
be expressed in complexity-theoretic terms as the conjecture that BQP 6= BPP since the whole
premise of quantum computation is that it cannot be efficiently simulated by classical computers.

As a step towards relating BQP to known classical complexity classes, numerous upper bounds on
BQP have been proven. This relates to the problem of simulating quantum systems on classical
computers.

2.1 BQP is in EXP

Firstly, we will prove that we can simulate any polynomial-time quantum circuit in classical expo-
nential time. That is BQP ⊆ EXP.

Consider the following computational problem, which we will call CIRCUIT-PROB.

Definition 1 (CIRCUIT-PROB problem). Suppose we have a description of a quantum circuit C
accepting n qubits as input and m gates, with m a polynomial in n and each acting on one or two
qubits. What is the probability that measuring the first qubit in the state C|0〉⊗n gives the result 1?

|0〉

C

|0〉⊗(n−1)

Figure 2: Schematic for the CIRCUIT-PROB problem

To show that BQP ⊆ EXP, it suffices to show that CIRCUIT-PROB is in EXP since every problem
in BQP may be reduced to CIRCUIT-PROB.

Theorem 2. BQP ⊆ EXP.

Proof. Let C be a polynomial sized quantum circuit on n qubits and m gates. Let |ψ0〉 = |0〉⊗n
and |ψi〉 be the state after the ith gate in the circuit is applied to |ψi−1〉. Each state |ψi〉 can be
represented in a classical computer as a unit vector in C2n . Furthermore, |ψi〉 can be computed
from |ψi−1〉 by matrix-vector multiplication taking 2O(n) time. Hence, the final state |ψm〉 can be
computed in m2O(n) time, and therefore all together, we have an 2O(n) time algorithm for calculating
the probability that the first qubit is measured to be one. This implies that BQP ⊆ EXP by
BQP-completeness of CIRCUIT-PROB.

Notice in the above proof that the algorithm used to simulate the given quantum circuit used O(2n)
space. Can we be more space efficient? In fact, we can simulate quantum circuits in polynomial
space.

3

2.2 BQP is in PSPACE

To simulate polynomial sized quantum circuits in polynomial space, we will use physicist Richard
Feynman’s “sum over histories” construction which he introduced in his study of quantum mechan-
ics. This result was proved by Bernstein and Vazirani in [3].

Sum Over Histories Example. To illustrate this construction, we will revisit one of the first
quantum circuit that we studied in this class, illustrated in Figure 3. Since H is a Hadamard gate,
we can compute the probability that we measure 0 to be 1 by computing the components of the
vector H2|0〉.

|0〉 H H

Figure 3: A quantum circuit

We can view the computation performed by the circuit in Figure 3 as a tree as follows. The first
Hadamard gate H takes |0〉 to the state 1√

2
(|0〉 + |1〉), so we can represent this as a labelled tree

with root label |0〉, and edges (|0〉, |i〉) labelled by 〈i|H|0〉. Call each label an amplitude. This is
illustrated in Figure 4.

|0〉

|0〉 |1〉

1√
2

1√
2

Figure 4: One level of the sum over histories tree

The action of the Hadamard gate H on the states |0〉 and |1〉 can then be represented by second
level of the tree. This is illustrated in Figure 5.

|0〉

|0〉 |1〉

|0〉 |1〉 |0〉 |1〉

1√
2

1√
2

1√
2

1√
2

1√
2

− 1√
2

Figure 5: The full sum over histories tree

Using the tree illustrated in Figure 5, we can then calculate the final state a0|0〉 + a1|1〉 of the
quantum circuit. Firstly, consider the two paths from the root to a leaf labelled |0〉, namely
|0〉 → |0〉 → |0〉 and |0〉 → |1〉 → |0〉. Along either path, we can compute a path amplitude by
multiplying the amplitudes along each path. Summing up the amplitudes over both paths yields
a0 = (1√

2
)2 + (1√

2
)2 = 1. Summing up the path amplitudes over all paths leading to |1〉 yields

a1 = (1√
2
)2 − (1√

2
)2 = 0. Hence, we have recovered that the final state is |0〉 from this calculation.

Sum Over Histories in General. In general, if C is a quantum circuit acting on n qubits with
m gates, the sum over histories tree will be a tree of depth m, with one level for each gate gi in
addition to the root, and with branching factor 2n.

4

|0 . . . 0〉

|0 . . . 0〉 |0 . . . 1〉 . . . |1 . . . 1〉

...
...

...
...

|0 . . . 0〉 |1 . . . 1〉

root

level

g1

gm

Figure 6: The full sum over histories tree

A history is a path in the sum of histories tree. We will denote a history by a sequence u0 =
|0〉⊗n → u1 → · · · → um−1 → um = x for some final state x.

Let u, v ∈ {0, 1}n. Observe amplitude of the edge (|u〉, |v〉) in the jth level of the sum over histories
tree is αj(u→ v) = 〈v|gj |u〉. Next, for any history, the transition amplitude of the history is
the product

α1(|0〉n → u1)α2(u1 → u2) . . . αm(um−1 → x). (1)

Lemma 3. Fix a history u0 → · · · → um. The transition amplitude of the history is computable in
polynomial time.

Proof. Each gate gj can be decomposed into gj = I ⊗ g̃j for some unitary operator g̃j acting on
two qubits, which without loss of generality can taken to be the first two. Hence,

〈v|gj |u〉 = 〈v1v2|g̃j |u1u2〉〈v3 . . . vn|u3 . . . un〉,

which can be computed in polynomial time in n. Since m is polynomial in n, the transition
amplitude of the history can be computed in polynomial time.

From equation 1, we can then deduce the following formula.

Lemma 4. Let x̃ ∈ {0, 1}m and C|0〉⊗n =
∑

x∈{0,1}n αx|x〉 be the final state of the quantum circuit.
The amplitude αx̃ can be computed by

αx̃ =
∑

histories u0→···→um

m∏
i=1

αj(uj−1 → uj)

where u0 = |0〉⊗n and um = |x̃〉.

Pseudo-code for computing αx̃ for implementing the formula given in Lemma 4 is given in Algorithm
1.

We are now ready to prove that BQP ⊆ PSPACE.

5

Algorithm 1 Sum of histories algorithm for computing the amplitude αx in C|0〉⊗n =
∑

x αx|x〉.
amp← 0
for every history u0 = |0〉⊗n, u1, . . . , um−1, um = |x〉 do

β ← 1
for j = 1 to m do

β ← β × αj(uj−1 → uj)
end for
amp← amp+ β

end for
return amp

Theorem 5. BQP ⊆ PSPACE.

Proof. Let C be a polynomial sized quantum circuit on n qubits and m gates. Suppose C|0〉⊗n =∑
x∈{0,1}n αx|x〉.

Notice in the sum over histories algorithm to compute some amplitude αx, only one history is
stored at any point in the computation. Hence, the sum over histories algorithm uses O(nm) space
to compute αx for any x since O(nm) bits are needed to store the histories in addition to the
workspace variables αj , β, amp to some precision.

Therefore, in polynomial space, we may compute
∑

x |αx|2 over all x with the first qubit being 1
to compute the probability that the first qubit is measured to be 1 by the end of the circuit. Since
we have constructed a polynomial space algorithm for computing the probability of measuring 1
for the first qubit of C|0〉⊗n (i.e. the CIRCUIT-PROB problem), which we stated earlier that every
problem in BQP reduces to, BQP ⊆ PSPACE.

Notice that compared with the simulation given for the proof that BQP ⊆ EXP, our algorithm
here takes far less space but far more time instead. In fact it takes O(m2mn) time to calculate a
single amplitude! Finding the right trade-offs between time and space for classical simulation of
quantum circuits is a current research topic especially as larger quantum computers get built and
need to be verified.

A similar sum-over-histories argument can be used to show that BQP ⊆ PP (probabilistic poly-
nomial time). The proof of this result can be found in [1]. The best upper bound one is that
BQP ⊆ AWPP, which is an (obscure) variant of PP.

3 Lower Bounds: evidence that NP is not in BQP

Despite these useful results, we are still interested in the relation between BQP and more commonly
studied complexity classes such as P,NP, and BPP. To show BQP 6= BPP, we must prove that
there is no fast, clever classical algorithm that for simulating quantum systems that doesn’t require
exponential overhead. As of present, extremely smart physicists such as Richard Feynman have
thought long and hard about this problem, but their inability to reach a conclusion doesn’t mean
that no such algorithm exists.

6

As many hypotheses in complexity theory aren’t formally proven, we can try to gather evidence
that supports our arguments. A widely-held belief is that NP is not a subset of BQP, that is,
quantum computers can’t efficiently solve NP-complete problems. If this hypothesis is true, it
would consequently imply P 6= NP, since P is contained in BQP. More concretely, the NP *
BQP hypothesis states that quantum algorithm can’t solve 3 SAT efficiently despite that 3 SAT
is NP-complete.

To give evidence in favour of our hypothesis, we will show there is an oracle problem whose solution
can be verified in polynomial time, however the problem itself cannot be solved efficiently. Given
black-box access to a function f : {0, 1}n → {0, 1}, the goal is to find x ∈ {0, 1}n such that
f(x) = 1 if such an x exists. We can only make queries to f . This problem can be solved non-
deterministically: if a proposed solution y is provided, one can easily verify if f(y) = 1 with a simple
query, hence this problem is in NPf (i.e., NP given oracle access to f). In contrast, exponentially
many queries to f are required in the worst case to find a solution using a quantum algorithm.

A quantum algorithm accesses f via the oracle Uf as

Uf |x〉 = (−1)f(x)|x〉 ∀x ∈ {0, 1}n.

By the results obtained from Grover’s search algorithm,
√

2n is an upper bound on the number of
queries required to solve the problem. We will show that this is the optimal number of queries and
any quantum query algorithm that makes fewer than

√
2n queries cannot solve the problem. This

was also shown to be a lower bound by Bennett, Bernstein, Brassard, and Vazirani [2]. A quantum
query algorithm A that makes T queries is as follows:

|0〉⊗n

A0

Uf

A1

· · · Uf

AT

|0〉⊗m · · ·

|ψ1〉 |ψ2〉
Figure 7: Quantum query algorithm A

where each Ai is a unitary that acts on a (n+m)-dimensional qubit and is independent of f . There
are a total of T + 1 Ai gates. Assume T �

√
2n and the only way A finds information about f is

through a query performed on this quantum circuit.

We now analyze this quantum circuit using a hybrid argument. From a high level, we run the
algorithm on an input f such that f(x) = 0 for all x, and then find x∗ ∈ {0, 1}n that causes some
other function g (which we will soon define) to output 1 on x∗ and 0 everywhere else, but A can’t
notice the change. Hence from A’s perspective, Uf = Ug, but they are actually quite different.

Let |ψt〉 be the state of the circuit just before the tth query (or directly after applying the At−1
unitary, which is the same). Then,

|ψt〉 =
∑
x,w

αx,w,t|x,w〉

where the sum is over all x ∈ {0, 1}n, w ∈ {0, 1}m. Define query magnitude of x ∈ {0, 1}n as

Mx =

T∑
t=1

∑
w

|αx,w,t|2.

7

Intuitively, this is a sum over all queries of the probability that x is queried.

Claim 6. The sum of query magnitudes over all possible configurations of x ∈ {0, 1}n is T , i.e.,∑
x∈{0,1}n

Mx = T.

Proof. Just by using the definition of query magnitude,

∑
x∈{0,1}n

Mx =
∑

x∈{0,1}n

T∑
t=1

∑
x,w

|αx,w,t|2 =
T∑
t=1

1 = T.

This result thus implies that, on average over x, Mx ≈ T/2n. Since it’s an average, we can infer
∃x̃ such that Mx̃ ≤ T/2n. Consequently, the total weight of the queries on x̃ is T/2n. Also, since
T �

√
2n, we get that x̃� 1/

√
2n and A doesn’t really “pay attention” to x̃. We can use this fact

and change the Uf oracles in our quantum algorithm one-by-one until they all become Ug. Define
g : {0, 1}n → {0, 1} as

g(x) =

{
1 if x = x̃

0 otherwise
.

After this change, the state of A using all Ug oracles instead of Uf will be close. The hybrid
approach structure proceeds as follows:

H0: Let |ψ(0)
T 〉 be the state of A after the T th query

H1: Let |ψ(1)
T 〉 be the state of A after the T th query where we replace the last Uf query with Ug

H2: Let |ψ(2)
T 〉 be the state of A after the T th query where we replace the last two Uf queries with

Ug

...

HT : Let |ψ(T)
T 〉 be the state of A after the T th query where we replace all Uf queries with Ug

For example, the quantum circuit corresponding to H1 is illustrated here:

|0〉⊗n

A0

· · · Uf

AT−1

Ug

AT

|0〉⊗m · · ·

Claim 7.
T∑
t=1

√∑
w

|αx̃,w,t|2 ≤
T√
2n
.

8

Proof. Making use of the Cauchy-Schwarz inequality,

T∑
t=1

√∑
w

|αx̃,w,t|2 ≤

√√√√(T∑
t=1

1

)(∑
t

∑
w

|αx̃,w,t|2
)

=
√
TMx ≤

T

2n
.

Our goal now is to show that |ψ(0)
T+1〉 and |ψ(T)

T+1〉 are very “close”, which will ultimately show A
treats the Uf and Ug oracles the same since their outputs are close. First, we establish that

|ψ(0)
T 〉 =

∑
x,w

αx,w,T |x,w〉,

|ψ(1)
T 〉 =

∑
x̃ 6=x,w

αx,w,T |x,w〉 −
∑
x,w

αx̃,w,T |x̃, w〉,

and therefore∥∥∥|ψ(0)
T 〉 − |ψ

(1)
T 〉
∥∥∥ =

∥∥∥ATUf |ψ
(0)
T−1〉 −ATUg|ψ(0)

T−1〉
∥∥∥

=
∥∥∥Uf |ψ

(0)
T−1〉 − Ug|ψ(0)

T−1〉
∥∥∥ (since unitaries preserve distance)

= 2

∥∥∥∥∥∑
w

αx̃,w,T−1|x̃, w〉

∥∥∥∥∥
= 2

√∑
w

|αx̃,w,T−1|2.

This argument can be extended via induction to show that∥∥∥|ψ(k)
T 〉 − |ψ

(k+1)
T 〉

∥∥∥ =
∥∥∥|ψ(k)

T−k〉 − |ψ
(k+1)
T−k 〉

∥∥∥
= 2

√∑
w

|αx̃,w,T−k|2.

for all k. We are now ready to prove our final result. Using claims 6 and 7,∥∥∥|ψ(0)
T 〉 − |ψ

(T)
T 〉

∥∥∥ ≤ T−1∑
t=0

∥∥∥|ψ(t)
T 〉 − |ψ

(t+1)
T 〉

∥∥∥ (by triangle inequality)

≤ 2

T−1∑
t=0

√∑
w

|αx̃,w,T−t|2

≤ 2
T√
2n
.

What is happening here? Intuitively, the angle between |ψ(0)
T 〉 and |ψ(T)

T 〉 is so small that A cannot
tell the difference between f and g unless T ≈

√
2n. We have thus shown that

√
2n is a lower

bound on the number of queries required. Although this is not a formal proof that NP * BQP,
it is nevertheless evidence in favour of the hypothesis.

9

References

[1] L. Adleman, J. DeMarrais, and M. Huang. Quantum computability, SIAM Journal on Comput-
ing 26:1524-1540, 1997.

[2] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum
computation, SIAM Journal on Computing, 1997.

[3] E. Bernstein and U. Vazirani. Quantum complexity theory, SIAM Journal on Computing,
26(5):1411-1473, 1997.

10

